An Asymptotic Analysis of Unlabeled k-Trees

Emma Yu Jin

Working group of Algorithm and Complexity
Department of Computer Science
University of Kaiserslautern, Germany

Email: jin@cs.uni-kl.de

Joint work with Michael Drmota
Outline

- k-tree
 - unlabeled k-tree
 - labeled k-tree
- Generating function
 - k-coding tree
 - Dissymmetry Theorem
 - Burnside’s Lemma
- Asymptotic analysis
 - the numbers of unlabeled k-trees
 - leaves of unlabeled k-trees
 - degree distribution
Motivation

- The notion of a k-tree originates from the parameter tree-width.
- A k-tree is the maximal graph with a fixed tree-width k such that no more edges can be added without increasing its tree-width.
- Tree-width is important to the analysis of graphs with forbidden minors.
- Many NP-hard problems on graphs of bounded tree-width can be solved in polynomial time.
Unlabeled k-tree

Definition:
A k-tree is either a complete graph on k vertices or a graph obtained from a smaller k-tree by adjoining a new vertex together with k edges connecting it to a k-clique of the smaller k-tree. In particular, a 1-tree is an unrooted tree.

Examples: 1-tree and 2-tree
Definition:

A \(k \)-tree is either a complete graph on \(k \) vertices or a graph obtained from a smaller \(k \)-tree by adjoining a new vertex together with \(k \) edges connecting it to a \(k \)-clique of the smaller \(k \)-tree. In particular, a 1-tree is an unrooted tree.

Examples: The rightmost ones are NOT \(k \)-trees.
Labeled k-tree

- Labeled k-trees have been already counted by Beineke, Pippert, Moon and Foata four decades ago. They showed that the number B_n of k-trees having n labeled vertices is

$$B_n = \binom{n}{k} (k(n-k) + 1)^{n-k-2}.$$

Generating function

Unlabeled k-tree

Basic definitions and facts:

- Let $g \in \mathcal{S}_m$ be a permutation of $\{1,2,\cdots,m\}$ that has ℓ_i cycles of size i, $1 \leq i \leq k$, in its cyclic decomposition. Then its cycle type $\lambda = (1^{\ell_1}2^{\ell_2} \cdots k^{\ell_k})$ is a partition of m where $m = \sum_{i=1}^{k} i\ell_i$. We denote by $\lambda \vdash m$ that λ is a partition of m.

- Let $z_{\lambda} = 1^{\ell_1}!2^{\ell_2}!\cdots k^{\ell_k}!\ell_k!$, then $\frac{m!}{z_{\lambda}}$ is the number of permutations in \mathcal{S}_m of cycle type λ.

- A hedron is a $(k + 1)$-clique in a k-tree and a front is a k-clique in a k-tree. According to the inductive construction of a k-tree, the number of vertices in a k-tree having n hedra is $n + k$.

- The size of a k-tree is n if it has n hedra.
Hedron-labeled k-tree

- A colored hedron-labeled k-tree of size n is a k-tree that has each vertex colored from the set $\{1', 2', \ldots, (k+1)\}'$ so that any two adjacent vertices are colored differently, and each hedron is labeled with a distinct number from $\{1, 2, \ldots, n\}$.

The only automorphism that preserves hedra and colors of a colored hedron-labeled k-tree is the identity automorphism, for which we can ignore the colors of vertices and consider the hedron-labeled k-trees.

- Example: a hedron-labeled 2-tree (left)
Generating function

From a hedron-labeled k-tree to a k-coding tree

To construct a k-coding tree from a hedron-labeled k-tree, we color each front of a hedron with a distinct color from the set $\{1, 2, \cdots, k + 1\}$. The corresponding labeled k-coding tree has a black vertex labeled with i representing a hedron of the k-tree with label i and a j-colored vertex representing a front of the k-tree with color j. We connect a black vertex with a colored vertex if and only if the corresponding hedron contains the corresponding front.
The construction from a hedron-labeled, fronted colored \(k \)-tree of size \(n \) to a labeled \(k \)-coding tree of size \(n \) is a bijection.

Let \(G_1 \mapsto G_2 \) under this bijection, then for every \(\pi \in S_n \) and \(\sigma \in S_{k+1} \), \(\pi(G_1) \mapsto \pi(G_2) \) and \(\sigma(G_1) \mapsto \sigma(G_2) \).

Under the action of \(S_n \) and \(S_{k+1} \), the orbits of hedron-labeled, front-colored \(k \)-tree, which are unlabeled \(k \)-trees are in bijection with the orbits of unlabeled \(k \)-coding trees under the action \(S_{k+1} \).
The unlabeled k-trees are in bijection with the orbits of unlabeled k-coding trees under the action \mathfrak{S}_{k+1}.

The number U_n of unlabeled k-trees is equal to the number of the orbits of unlabeled k-coding trees under the action of \mathfrak{S}_{k+1}.
Dissymmetry Theorem

The dissymmetry theorem transforms the problem of counting unrooted, unlabeled k-coding trees to that of counting rooted, unlabeled k-coding trees.

- W_n: the set of k-coding trees with black vertex set $[n]$.
- W_n^\bullet: the set of \bullet-rooted k-coding trees.
- W_n°: the set of \circ-rooted k-coding trees.
- $W_n^{\circ\bullet}$: the set of \circ-\bullet rooted k-coding trees.
Dissymmetry Theorem

Theorem (Dissymmetry Theorem)

There is a bijection \(\Theta : W_n^o \cup W_n^\bullet \rightarrow W_n \cup W_n^{o-\bullet} \) that commutes with the actions of \(S_n \) on vertex labels and of \(S_{k+1} \) on colors.

Ideas of the proof:

- Every longest path in the k-coding tree has a unique midpoint, we name it as a center point. This center point is either a labeled black vertex or a colored white vertex.

- Let \(T \) be a rooted tree in \(W_n^o \cup W_n^\bullet \). If \(T \) is rooted at its center point, \(\Theta(T) \) is the underlying unrooted tree of \(T \). Otherwise, we take \(\Theta(T) \) to be the underlying tree of \(T \) rooted at the first edge from the root of \(T \) to the center point.
Burnside’s Lemma

Lemma (Burnside)
Suppose that a finite group G acts on the weighted set S so that weights are constant on orbits. Let the weight of an orbit be the weight of any of its elements. For each $g \in G$, we denote by $\text{fix}(g)$ the sum of the weights of the elements of S fixed by g. Then the sum of the weights of the orbits of S under G is equal to $\frac{1}{|G|} \sum_{g \in G} \text{fix}(g)$.

Lemma (Burnside’s lemma for $G = \mathfrak{S}_m$)
For each partition λ of m, let f_{λ} be the sum of the weights of the elements of S fixed by a permutation of cycle type λ. Then the sum of the weights of the orbits of S under \mathfrak{S}_m is $\sum_{\lambda \vdash m} \frac{f_{\lambda}}{z_{\lambda}}$.
Theorem (Gessel and Gainer-Dewar, 2013)

The generating function $U(z)$ for unlabeled k-trees is given by

$$U(z) = B(z) + C(z) - E(z),$$

where $B(z)$ (resp. $C(z)$, $E(z)$) is the generating function for color-orbits of •-rooted (resp. ◦-rooted, •-◦-rooted) unlabeled k-coding trees.

$$B(z) = \sum_{\lambda \vdash k+1} \frac{B_\lambda(z)}{z_\lambda} \quad B_\lambda(z) = z \prod_i C_{\lambda_i}(z^i)$$

$$C(z) = \sum_{\mu \vdash k} \frac{C_\mu(z)}{z_\mu} \quad B^*_\mu(z) = z \prod_i C_{\mu_i}(z^i)$$

$$E(z) = \sum_{\mu \vdash k} \frac{B^*_\mu(z) C_\mu(z)}{z_\mu} \quad C_\mu(z) = \exp \left[\sum_{m=1}^{\infty} \frac{B^*_\mu(z^m)}{m} \right]$$
The generating function $U(z)$ for unlabeled k-trees is given by

$$U(z) = B(z) + C(z) - E(z),$$

where

$$B(z) = \sum_{\lambda \vdash k+1} \frac{B_\lambda(z)}{z^\lambda},$$

$$C(z) = \sum_{\mu \vdash k} \frac{C_\mu(z)}{z^\mu},$$

$$E(z) = \sum_{\mu \vdash k} \frac{B_\mu^*(z) C_\mu(z)}{z^\mu}.$$

$B_\lambda(z)$ is the generating function for black-rooted tree that are fixed by π where π has cycle type λ.
The generating function $U(z)$ for unlabeled k-trees is given by

$$U(z) = B(z) + C(z) - E(z),$$

where

$$B(z) = \sum_{\lambda \vdash k+1} \frac{B_\lambda(z)}{z_\lambda},$$

$$C(z) = \sum_{\mu \vdash k} \frac{C_\mu(z)}{z_\mu},$$

$$E(z) = \sum_{\mu \vdash k} \frac{B_\mu^*(z)C_\mu(z)}{z_\mu}.$$

$C_\mu(z)$ is the generating function for colored-rooted tree that are fixed by σ where σ has cycle type μ.
The generating function $U(z)$ for unlabeled k-trees is given by

$$U(z) = B(z) + C(z) - E(z),$$

where

$$B(z) = \sum_{\lambda \vdash k+1} \frac{B_\lambda(z)}{z^\lambda},$$

$$C(z) = \sum_{\mu \vdash k} \frac{C_\mu(z)}{z^\mu},$$

$$E(z) = \sum_{\mu \vdash k} \frac{B^*_\mu(z)C_\mu(z)}{z^\mu}.$$

A j-reduced black-rooted tree if it is a black-rooted unlabeled k-coding tree with all the neighbors of the root are colored by $[k + 1] - \{j\}$. $B^*_\mu(z)$ is the generating function for j-reduced black-rooted tree that are fixed by σ where σ has cycle type μ.
Generating function

\[B_\lambda(z) = z \prod_i C_{\lambda_i}(z^i) = z \prod_c C_{\pi|c|}(z^{|c|}) \]

\[B^*_\mu(z) = z \prod_i C_{\mu_i}(z^i) \]

Let \(T \) be a \(\bullet \)-rooted tree fixed by \(\pi \), then the root of \(T \) connects to the trees \(T_1, \ldots, T_{k+1} \) where \(T_j \) is a \(j \)-rooted tree. Suppose \(j \) is in a cycle of \(\pi \) of length \(i \), then tree \(T_j \) is fixed by \(\pi^i \) and an equivalent class under \(\pi \) consists of trees \(T_j, T_{\pi(j)}, \ldots, T_{\pi^{i-1}(j)} \). Then the generating function for this equivalent class of trees is \(C_{\pi^i}(z^i) \).
Generating function

Suppose that T is a $(k + 1)$-rooted tree fixed by π, if we remove the root of T, we get a multiset of $(k + 1)$-reduced black rooted trees fixed by π. By applying the lemma below, the generating function $C_\mu(z)$ for these multisets is

$$C_\mu(z) = \exp \left[\sum_{m=1}^{\infty} \frac{B^*_\mu m(z^m)}{m} \right].$$

We denote by $\rho_n[u]$ the result of replacing each variable in the formal power series u by its n-th power.

Lemma

Let g be an element of G. Then the sum of the weights of the elements of $M(S)$ fixed by g is $\exp \left(\sum_{m=1}^{\infty} \frac{\rho_m[\text{fix}(g^m)]}{m} \right)$.
Generating function for $k = 3$

\[
B(z) = \frac{B_4(z)}{4} + \frac{B_{3,1}(z)}{3} + \frac{B_{2,2}(z)}{8} + \frac{B_{2,1,1}(z)}{4} + \frac{B_{14}(z)}{4!}
\]

\[
C(z) = \frac{C_3(z)}{3} + \frac{C_{2,1}(z)}{2} + \frac{C_{13}(z)}{6}
\]

\[
E(z) = \frac{B_3^*(z)C_3(z)}{3} + \frac{B_{2,1}^*(z)C_{2,1}(z)}{2} + \frac{B_{13}^*(z)C_{13}(z)}{6}
\]

\[
U(z) = B(z) + C(z) - E(z) = \frac{C_3(z)}{3} + \frac{C_{2,1}(z)}{2} + \frac{C_{13}(z)}{6}
\]

\[
- x\left[\frac{1}{8}(C_{13}(z))^4 + \frac{1}{4}C_{13}(z^2)(C_{2,1}(z))^2 - \frac{1}{8}(C_{13}(z^2))^2 - \frac{1}{4}C_{13}(z^4)\right].
\]
Generating function for $k = 3$

\[B(z) = \frac{B_4(z)}{4} + \frac{B_{3,1}(z)}{3} + \frac{B_{2,2}(z)}{8} + \frac{B_{2,1,1}(z)}{4} + \frac{B_{1^4}(z)}{4!} \]

\[C(z) = \frac{C_3(z)}{3} + \frac{C_{2,1}(z)}{2} + \frac{C_{1^3}(z)}{6} \]

\[E(z) = \frac{B^*_3(z)C_3(z)}{3} + \frac{B^*_{2,1}(z)C_{2,1}(z)}{2} + \frac{B^*_{1^3}(z)C_{1^3}(z)}{6} \]

\[B(z) = \sum_{\lambda \vdash k+1} \frac{B_\lambda(z)}{z^\lambda} \]
Generating function for $k = 3$

\[
B(z) = \frac{B_4(z)}{4} + \frac{B_{3,1}(z)}{3} + \frac{B_{2,2}(z)}{8} + \frac{B_{2,1,1}(z)}{4} + \frac{B_{1^4}(z)}{4!}
\]

\[
C(z) = \frac{C_3(z)}{3} + \frac{C_{2,1}(z)}{2} + \frac{C_{1^3}(z)}{6}
\]

\[
E(z) = \frac{B_{3^*}(z)C_3(z)}{3} + \frac{B_{2,1^*}(z)C_{2,1}(z)}{2} + \frac{B_{1^3}(z)C_{1^3}(z)}{6}
\]

\[
C(z) = \sum_{\mu \vdash k} \frac{C_\mu(z)}{z_\mu}
\]
Generating function for $k = 3$

\[
B(z) = \frac{B_4(z)}{4} + \frac{B_{3,1}(z)}{3} + \frac{B_{2,2}(z)}{8} + \frac{B_{2,1,1}(z)}{4} + \frac{B_{1,1,1,1}(z)}{4!}
\]

\[
C(z) = \frac{C_3(z)}{3} + \frac{C_{2,1}(z)}{2} + \frac{C_{1,1,1}(z)}{6}
\]

\[
E(z) = \frac{B^*_3(z)C_3(z)}{3} + \frac{B^*_{2,1}(z)C_{2,1}(z)}{2} + \frac{B^*_{1,1,1}(z)C_{1,1,1}(z)}{6}
\]

\[
E(z) = \sum_{\mu \vdash k} \frac{B^*_\mu(z)C_\mu(z)}{z_\mu}
\]
Generating function for $k = 3$

\[
B(z) = \frac{B_4(z)}{4} + \frac{B_{3,1}(z)}{3} + \frac{B_{2,2}(z)}{8} + \frac{B_{2,1,1}(z)}{4} + \frac{B_{14}(z)}{4!}
\]

\[
C(z) = \frac{C_3(z)}{3} + \frac{C_{2,1}(z)}{2} + \frac{C_{13}(z)}{6}
\]

\[
E(z) = \frac{B_3^*(z)C_3(z)}{3} + \frac{B_{2,1}^*(z)C_{2,1}(z)}{2} + \frac{B_{13}^*(z)C_{13}(z)}{6}
\]

\[
B_4(z) = zC_{14}(z^4) = zC_{13}(z^4)
\]

\[
B_{3,1}(z) = zC_3(z)C_{13}(z^3)
\]

\[
B_{2,1,1}(z) = z(C_{2,1}(z))^2C_{13}(z^2)
\]

\[
B_{14}(z) = z(C_{14}(z))^4 = z(C_{13}(z))^4
\]

\[
B_\lambda(z) = z \prod_{i} C_{\lambda i}(z^i)
\]
Generating function for $k = 3$

$B(z) = \frac{B_4(z)}{4} + \frac{B_{3,1}(z)}{3} + \frac{B_{2,2}(z)}{8} + \frac{B_{2,1,1}(z)}{4} + \frac{B_{14}(z)}{4!}$

$C(z) = \frac{C_3(z)}{3} + \frac{C_{2,1}(z)}{2} + \frac{C_{13}(z)}{6}$

$E(z) = \frac{B_3^*(z) C_3(z)}{3} + \frac{B_{2,1}^*(z) C_{2,1}(z)}{2} + \frac{B_{13}^*(z) C_{13}(z)}{6}$

$B_3^*(z) = zC_{13}(z^3)$

$B_{2,1}^*(z) = zC_{2,1}(z)C_{13}(z^2)$

$B_{13}^*(z) = z(C_{13}(z))^3$

$B_{\mu}^*(z) = z \prod_i C_{\mu i}(z^i)$
Generating function for \(k = 3 \)

\[
B(z) = \frac{B_4(z)}{4} + \frac{B_3(z)}{3} + \frac{B_{2,2}(z)}{8} + \frac{B_{2,1}(z)}{4} + \frac{B_{1^3}(z)}{4!}
\]

\[
C(z) = \frac{C_3(z)}{3} + \frac{C_{2,1}(z)}{2} + \frac{C_{1^3}(z)}{6}
\]

\[
E(z) = \frac{B_3^*(z)C_3(z)}{3} + \frac{B_{2,1}^*(z)C_{2,1}(z)}{2} + \frac{B_{1^3}^*(z)C_{1^3}(z)}{6}
\]

\[
U(z) = B(z) + C(z) - E(z) = \frac{C_3(z)}{3} + \frac{C_{2,1}(z)}{2} + \frac{C_{1^3}(z)}{6}
\]

\[
- x\left[\frac{1}{8}(C_{1^3}(z))^4 + \frac{1}{4}C_{1^3}(z^2)(C_{2,1}(z))^2\right]
\]

\[
- \frac{1}{8}(C_{1^3}(z^2))^2 - \frac{1}{4}C_{1^3}(z^4)].
\]
Asymptotic analysis

Let $U_n = [z^n] U(z)$ denote the number of unlabeled k-trees having n hedra. Then we have

Theorem

The numbers of unlabeled k-trees are asymptotically given by

$$U_n = \frac{1}{k!} \frac{(k\rho_k)^{-1}}{\sqrt{2\pi k^2}} \left[\frac{\rho_k m'(\rho_k)}{m(\rho_k)} \right]^{3/2} n^{-5/2} \rho_k^{-n} (1 + O(n^{-1})).$$

where $m(z) = z \exp \left[k \sum_{m=2}^{\infty} B^*_{1k}(z^m)/m \right]$, $B^*_{1k}(z) = m(z)e^{kB^*_{1k}(z)}$ and ρ_k is the unique real positive solution of $m(z) = (ek)^{-1}$.
Asymptotic analysis

Sketch of the proof:

▷ Step 1: Let ρ_k be the unique dominant singularity of $B_{1k}^*(z)$, then the dominant singularity $z = \rho_k$ of $B_{1k}^*(z)$ is of square root type.

▷ Step 2: For any $k \geq 2$ and $\mu \neq (1^k)$, $B_{\mu}^*(z)$ and $C_{\mu}(z)$ are analytic at $z = \rho_k$.

▷ Step 3: Prove the coefficient for the term $(\rho_k - z)^{1/2}$ in the singular expansion of $U(z)$ is zero and that for $(\rho_k - z)^{3/2}$ is positive.

The value of ρ_k can be computed by following Otter’s work on 1-trees, cf. [Otter, 1948]. For $k = 2$, ρ_2 is already computed in [Fowler, Gessel, Labelle, Leroux, 2002] and turns out to be ≈ 0.177.
Asymptotic analysis

We will use $k = 3$ as an example to show the strategy of the proof. Step 1 of the proof:

From the generating functions

$$B_{\mu}^*(z) = z \prod_i C_{\mu_i}(z^i)$$

$$C_{\mu}(z) = \exp\left(\sum_{m=1}^{\infty} \frac{B_{\mu m}(z^m)}{m}\right)$$

we consider the case $\mu = (1^3)$, then

$$B_{13}^*(z) = z (C_{13}(z))^3 = z \exp(3 \sum_{m=1}^{\infty} \frac{B_{13}(z^m)}{m})$$

$$= \exp(3B_{13}^*(z)) z \exp(3 \sum_{m=2}^{\infty} \frac{B_{13}(z^m)}{m})$$

$$= m(z)$$
Step 1 of the proof:

and $B^*_1(z) = T(m(z))$ for some power series $T(z)$ that satisfies $T(z) = z \exp(3T(z))$. We denote by $W(z)$ the Cayley function given by $W(z) = z \exp(W(z))$. It follows that $T(z) = \frac{1}{3} W(3z)$. It is very well known $W(z)$ has radius of convergence $\rho = 1/e$ that it has a singular expansion of the form

$$W(z) = 1 - \sqrt{2}(1 - ez)^{1/2} + \frac{2}{3}(1 - ez) + \cdots$$

around $z = 1/e$ and that $W(z)$ can be analytically continued to a region of the form $\{z \in \mathbb{C} : |z| < 1/e + \eta\} \setminus [1/e, \infty)$ for some $\eta > 0$. That implies $T(z)$ has corresponding properties, of course its radius of convergence equals $1/(3e)$ and $T(z)$ is analytic in $\Delta_{1/(3e)}(1/(3e) + \eta, \phi)$.
Asymptotic analysis

Step 1 of the proof:

Since \(m(z) \) has radius of convergence \(\sqrt{\rho_3} > \rho_3 \) it follows that it is analytic at \(z = \rho_3 \). More precisely the singular expansion of \(B_{13}^*(z) \) close to \(z = \rho_3 \) comes from composing the singular expansion of \(T(z) \) at \(1/(3e) \) with the analytic expansion of \(m(z) \) at \(\rho_3 \). In this context we also observe that \(m(\rho_3) = (3e)^{-1} \) and \(m'(\rho_3) > 1 \). According to this we get the local expansion

\[
B_{13}^*(z) = \frac{1}{3} - \frac{\sqrt{2}}{3} \left[\frac{(\rho_3 - z)m'(\rho_3)}{m(\rho_3)} \right]^{1/2} + \frac{2}{9} \left[\frac{(\rho_3 - z)m'(\rho_3)}{m(\rho_3)} \right] + O((\rho_3 - z)^{3/2}).
\]
Asymptotic analysis

Step 1 of the proof:

Henceforth $C_{13}(z) = z^{-1/3} B_{13}^*(z)^{1/3}$ has $z = \rho_3$ as dominant singularity of square root type, too, and a local expansion of the form

$$C_{13}(z) = (3\rho_3)^{-1/3} + a(\rho_3 - z)^{1/2} + b(\rho_3 - z) + c(\rho_3 - z)^{3/2} + O(\rho_3 - z)^2$$

where a, b are given by

$$a = -\sqrt{2}(3\rho_3)^{2/3} \left[\frac{m'(\rho_3)}{m(\rho_3)} \right]^{1/2}$$

$$b = 0.$$

Actually the functions $B_{13}^*(z) = B_{14}^*(z)$, $C_{13}(z) = C_{14}(z)$, and $B_{14}(z)$ have the same radius of convergence ρ_3.
Asymptotic analysis

- Step 2 of the proof:

\[B_3^*(z) = zC_{13}(z^3) \]
\[B_{2,1}^*(z) = zC_{2,1}(z)C_{13}(z^2) \]
\[B_{13}^*(z) = z(C_{13}(z))^3 \]

We only need to show \(B_{2,1}^*(z) \) is analytic at \(z = \rho_3 \). Let \(\tau_{2,1} \) be the unique dominant singularity of \(B_{2,1}^*(z) \). Since the number of black-rooted trees that are fixed by permutation of type \(\mu \) is less than or equal to those fixed by identity permutation, i.e., \([z^n]B_{(2,1)}^*(z) \leq [z^n]B_{13}^*(z)\) it follows that \(\tau_{(2,1)} \geq \rho_3 \). Therefore it remains to prove \(\tau_{(2,1)} \neq \rho_3 \).
Step 2 of the proof:

From the generating functions

\[
B_{(2,1)}^*(z) = zC_{(2,1)}(z)C_1^3(z^3)
\]

(1)

\[
C_{(2,1)}(z) = \exp(B_{(2,1)}^*(z)) \exp\left[\sum_{m=2}^{\infty} \frac{B_{(2,1)}^*(z^m)}{m} \right]
\]

(2)

we have

\[
B_{(2,1)}^*(z) = zC_1^3(z^3) \exp(B_{(2,1)}^*(z)) \exp\left[\sum_{m=2}^{\infty} \frac{B_{(2,1)}^*(z^m)}{m} \right].
\]
Asymptotic analysis

Step 2 of the proof:

By setting $B_{(2,1)}^*(z) = y$, it follows that $(\tau_{(2,1)}, B_{(2,1)}^*(\tau_{(2,1)}))$ is the unique solution of

$$M(z, y) = zC_{13}(z^3) \exp(y) \exp \left[\sum_{m=2}^{\infty} \frac{B_{(2,1)}^*(z^m)}{m} \right] = y$$

$$M_y(z, y) = zC_{13}(z^3) \exp(y) \exp \left[\sum_{m=2}^{\infty} \frac{B_{(2,1)}^*(z^m)}{m} \right] = 1,$$

and consequently $B_{(2,1)}^*(\tau_{(2,1)}) = 1$.

Recall that $B_{13}^*(\rho_3) = 1/3$, thus, we have $3B_{13}^*(\rho_3) = B_{(2,1)}^*(\tau_{(2,1)}) = 1$. If $\tau_{(2,1)} = \rho_3$, then $3B_{13}^*(\rho_3) > B_{(2,1)}^*(\rho_3) = 1$, which contradicts the relation $3B_{13}^*(\rho_3) = 1$. Therefore we can conclude that $\rho_3 < \tau_{(2,1)}$ and therefore $C_{(2,1)}(z)$ also has dominant singularity $\tau_{(2,1)}$.
Asymptotic analysis

Step 3 of the proof:

Summing up, since $B_{14}(z) = zC_{13}(z)^4$ has a square-root singularity at $z = \rho_3$ and B_λ for any $\lambda \neq (1^4)$ is analytic at ρ_3, the dominant term in the singular expansion of $U(z)$ comes from

$$\frac{B_{14}(z)}{z_{14}} + \frac{C_{13}(z)}{z_{13}} - \frac{C_{13}(z)B_{13}^*(z)}{z_{13}} = -\frac{zC_{13}(z)^4}{8} + \frac{C_{13}(z)}{6}.$$

All the other terms are all analytic at $z = \rho_3$. Together with the singular expansion of $C_{13}(z)$, we can derive the singular expansion of $U(z)$ at $z = \rho_3$:

$$U(z) = U(\rho_k) + \frac{2\sqrt{2}}{9} \frac{(3\rho_3)^{-\frac{1}{3}}}{27} \left[\frac{(\rho_3 - z)m'(\rho_3)}{m(\rho_3)} \right]^{3/2} + c_1(\rho_3 - z) + c_2(\rho_3 - z)^2 + O((\rho_3 - z)^{5/2}).$$
Asymptotic analysis

Compute the value of \(\rho_k \) for specific \(k \)

Let \(T_n = [z^n]B_{1,k}^*(z) \) and \(m_n = [z^n]m(z) \). Then by taking the derivative of equations

\[
B_{1,k}^*(z) = z \exp \left[k \sum_{m=1}^{\infty} \frac{B_{1,k}^*(z^m)}{m} \right], \quad m(z) = z \exp \left[k \sum_{m=2}^{\infty} \frac{B_{1,k}^*(z^m)}{m} \right],
\]

and equating the coefficients, we get the recurrences for \(T_n \) and \(m_n \),

\[
T_n = k \sum_{i=1}^{n-1} \sum_{m \mid i} T_{n-i} m T_m \quad \text{for } n > 1 \text{ and } T_1 = 1.
\]

\[
m_n = k \sum_{i=2}^{n-1} \sum_{m \mid i, m \neq i} m_n-i m T_m \quad \text{for } n > 2 \text{ and } m_1 = 1, m_2 = 0.
\]

Then the value of \(\rho_k \) is obtained by solving numerically the equation

\(m(z) = 1/(ek) \) where \(m(z) \approx \sum_{i \leq 20} m_i z^i \).
Leaves of unlabeled k-trees

We call a black node a *leaf* if only one of its colored neighbor connects with other black nodes. In the sequel we shall weight each black node by z and each leaf by w.
Leaves of unlabeled k-trees

We call a black node a leaf if only one of its colored neighbor connects with other black nodes. In the sequel we shall weight each black node by z and each leaf by w. Let $U(z, w)$ be the generating function for unlabeled color-orbits of unlabeled k-coding trees, then we have:

Theorem

Let X_n be the random variable associated with the number of leaves of k-coding trees, that is $\mathbb{P}(X_n = r) = \frac{[z^n w^r] U(z, w)}{[z^n] U(z, 1)}$. Then there exists positive constants μ and σ^2 such that $\mathbb{E}(X_n) = \mu n + O(1)$ and $\mathbb{V}ar(X_n) = \sigma^2 n + O(1)$. Furthermore X_n satisfies a central limit theorem of type $\frac{X_n - \mathbb{E}(X_n)}{\sqrt{\mathbb{V}ar(X_n)}} \rightarrow N(0, 1)$.
Asymptotic analysis

Leaves of unlabeled k-trees

Sketch of the proof:

- Step 1: By replacing the weight z of each leaf by zw, we first obtain the generating function $U(z,w)$.

- Step 2: Study the expansion of $B_{1k}^*(z,w)$ for $|w - 1| \leq \varepsilon$, $|z - \rho_k(w)| < \varepsilon$, $\arg(z - \rho_k(w)) > \phi$ (for some $\phi \in (0,\pi/2)$) and ε, ε are sufficiently small.

- Step 3: For $m \geq 2$ and $\mu \neq (1^k)$, $C_\mu(z,w)$, $B_{1k}^*(z,w)$, $C_{1k}(z^m,w^m)$ and $B_{1k}^*(z^m,w^m)$ are analytic if (z,w) is close to $(\rho_k,1)$.

- Step 4: Expand $U(z,w)$ locally around $z = \rho_k(w)$ and prove the coefficient for $\left(1 - \frac{z}{\rho_k(w)}\right)^{1/2}$ is zero at $(\rho_k(w),w)$, but the coefficient for $\left(1 - \frac{z}{\rho_k(w)}\right)^{3/2}$ is not zero at $(\rho_k(w),w)$.
Asymptotic analysis

The degree distribution of unlabeled k-trees

Clearly every black node in the k-coding tree has degree $k + 1$. So we concentrate on the degree distribution of colored nodes. Formally the variable x (instead of z) takes care of the number of colored nodes. In this way, we have $U(x) = B(x) + C(x) - E(x)$ where

$$B(x) = \sum_{\lambda \vdash k+1} \frac{B_\lambda(x)}{z_\lambda} \quad B_\lambda(x) = \prod_i C_{\lambda_i}(x^i)$$

$$C(x) = \sum_{\mu \vdash k} \frac{C_\mu(x)}{z_\mu} \quad B_\mu^*(x) = \prod_i C_{\mu_i}(x^i)$$

$$E(x) = \sum_{\mu \vdash k} \frac{B_\mu^*(x) C_\mu(x)}{z_\mu} \quad C_\mu(x) = x \exp \left[\sum_{m=1}^{\infty} \frac{B_\mu^m(x^m)}{m} \right].$$

The dominant singularity of $U(x)$ is also ρ_k.
Asymptotic analysis

The degree distribution of unlabeled k-trees

Now we give each colored node of degree d_i with weight u_i. Let $u = (u_1, \ldots, u_M)$, $m = (m_1, \ldots, m_M)$ where $m_i \geq 0$ and $d = (d_1, \ldots, d_M)$ where $d_i > 0$, then the coefficient of $x^n u^m$ in the generating function $U^{(d)}(x, u)$ is the number of of unlabeled k-trees that there are m_i colored nodes out of n total colored nodes having degree d_i.
Asymptotic analysis

The degree distribution of unlabeled k-trees

Theorem

Let $Y_{n,d} = (Y_{n,d_1}, \ldots, Y_{n,d_M})$ be the random vector of the number of colored nodes in an unlabeled k-tree that have degrees (d_1, \ldots, d_M), that is, $\mathbb{P}(Y_{n,d} = m) = \frac{[x^n u^m] U^{(d)}(x,u)}{[x^n] U^{(d)}(x,1)}$. Then there exists an M-dimensional vector μ and an $M \times M$ positive semidefinite matrix Σ such that $\mathbb{E}(Y_{n,d}) = \mu n + O(1)$ and $\text{Cov}(Y_{n,d}) = \Sigma n + O(1)$.

Furthermore $Y_{n,d}$ satisfies a central limit theorem of the form

$$\frac{Y_{n,d} - \mathbb{E}(Y_{n,d})}{\sqrt{n}} \rightarrow \mathcal{N}(0,\Sigma).$$
The degree distribution of unlabeled k-trees

Let $C^{(d)}(x,u)$ (resp. $B^{(d)}(x,u)$, $E^{(d)}(x,u)$) be the generating function for color-orbits of \circ-rooted (resp. \bullet-rooted, $\circ\bullet$-rooted) trees that has each colored node of degree d_i weighted by u_i. Let $P^{(d)}(x,u)$ be the generating function for the trees whose root is only connected with the root of a color-orbit of colored node-rooted tree, so that $C^{(d)}(x,1) = P^{(d)}(x,1)$. Here we introduce $P^{(d)}(x,u)$ to distinguish the case that the colored root has degree d_i for some $1 \leq i \leq M$.
Asymptotic analysis

The degree distribution of unlabeled k-trees

Let $Z(\mathcal{G}_p, B^{*,(d)}_\mu(x,u))$ represent the generating function of a forest consisting of p reduced black-rooted trees counted by $B^{*,(d)}_\mu(x,u)$:

$$Z(\mathcal{G}_p, B^{*,(d)}_\mu(x,u)) = Z(\mathcal{G}_p, B^{*,(d)}_\mu(x,u), B^{*,(d)}_{\mu^2}(x^2,u^2), \ldots, B^{*,(d)}_{\mu^p}(x^p,u^p))$$

$$= \sum_{\lambda \vdash p} \frac{1}{Z_\lambda} B^{*,(d)}_{\mu}(x,u)^{\lambda_1} B^{*,(d)}_{\mu^2}(x^2,u^2)^{\lambda_2} \cdots B^{*,(d)}_{\mu^p}(x^p,u^p)^{\lambda_p}$$

where $\lambda = (1^{\lambda_1} \cdots p^{\lambda_p})$.
Asymptotic analysis

The degree distribution of unlabeled k-trees

The generating function $U(x,u)$ for unlabeled k-trees with colored nodes of degree d is given by

$$U^{(d)}(x,u) = B^{(d)}(x,u) + C^{(d)}(x,u) - E^{(d)}(x,u)$$

where

$$B^{(d)}(x,u) = \sum_{\lambda \vdash k+1} \frac{B^{(d)}_{\lambda}(x,u)}{z_{\lambda}}, \quad C^{(d)}(x,u) = \sum_{\mu \vdash k} \frac{C^{(d)}_{\mu}(x,u)}{z_{\mu}}$$

$$E^{(d)}(x,u) = \sum_{\mu \vdash k} \frac{B^{*,(d)}_{\mu}(x,u) P^{(d)}_{\mu}(x,u)}{z_{\mu}}$$

$$B^{(d)}_{\lambda}(x,u) = \prod_{i} P^{(d)}_{\lambda^i}(x^i,u^i), \quad B^{*,(d)}_{\mu}(x,u) = \prod_{i} P^{(d)}_{\mu^i}(x^i,u^i)$$
Asymptotic analysis

The degree distribution of unlabeled k-trees

The generating function $U(x,u)$ for unlabeled k-trees with colored nodes of degree d is given by

$$U^{(d)}(x,u) = B^{(d)}(x,u) + C^{(d)}(x,u) - E^{(d)}(x,u)$$

where

$$C^{(d)}_{\mu}(x,u) = x \exp \left[\sum_{m=1}^{\infty} \frac{B^{*,(d)}_{\mu m}(x^m,u^m)}{m} \right]$$

$$+ \sum_{j=1}^{M} x(u_j - 1) Z(\mathcal{G}_{d_j}, B^{*,(d)}_{\mu}(x,u))$$

$$P^{(d)}_{\mu}(x,u) = x \exp \left[\sum_{m=1}^{\infty} \frac{B^{*,(d)}_{\mu m}(x^m,u^m)}{m} \right]$$

$$+ \sum_{j=1}^{M} x(u_j - 1) Z(\mathcal{G}_{d_j-1}, B^{*,(d)}_{\mu}(x,u))$$
The degree distribution of unlabeled k-trees

The dominant singularity for $B_{1k}^*(x,1)$ is ρ_k. As before, for $\mu \neq (1^k)$, $B_\mu^*(x,u)$ and for $m \geq 2$, $B_{1k}^*(x^m,u^m)$ are analytic if (x,u) is close to $(\rho_k,1)$. Next we consider

$$S(x,y,u) = \left(xe^y \exp \left(\sum_{m=2}^{\infty} \frac{B_{1k}^*(d,m,x^m,u^m)}{m} \right) \right)^k$$

$$+ \sum_{j=1}^{M} x(u_j - 1) Z(G_{d_j-1},y,B_{1k}^*(d,x^{d_j-1},u^{d_j-1})), \cdots , B_{1k}^*(d,x^{d_j-1},u^{d_j-1}))^k.$$

Since $S(0,y,u) \equiv 0$, $S(x,0,u) \not\equiv 0$ and all coefficients of $S(x,y,1)$ are real and positive, then $y(x,u) = B_{1k}^*(d,x,u)$ is the unique solution of the functional equation $S(x,y,u) = y$.
The degree distribution of unlabeled k-trees

Furthermore, \((x, y) = (\rho_k, 1/k)\) is the only solution of \(S(x, y, 1) = 0\) and \(S_y(x, y, 1) = 1\) with \(S_x(\rho_k, 1/k, 1) \neq 0, S_{yy}(\rho_k, 1/k, 1) \neq 0\). Consequently, \(B_{1k}^*(d)(x,u)\) can be represented as

\[
B_{1k}^*(d)(x,u) = g(x,u) - h(x,u) \left[1 - \frac{x}{\rho_k(u)} \right]^{1/2} \tag{3}
\]

which holds locally around \((x,u) = (\rho_k,1)\) and \(h(\rho_k(u),u) \neq 0\). In view of \(B_{1k}^*(d)(x,u) = P_{1k}^{(d)}(x,u)^k\), \(P_{1k}^{(d)}(x,u)\) also has expansion of square root type, i.e.,

\[
P_{1k}^{(d)}(x,u) = s(x,u) - t(x,u) \left[1 - \frac{x}{\rho_k(u)} \right]^{1/2} \tag{4}
\]

where \(t(\rho_k(u),u) \neq 0\).
Asymptotic analysis

The degree distribution of unlabeled k-trees

Based on the equation

\[C^{(d)}_{\mu}(x,u) - P^{(d)}_{\mu}(x,u) \]

\[= \sum_{j=1}^{M} x(u_j - 1) \left[Z(\mathcal{G}_{d_j}, B_{\mu}^{(d)}(x,u)) - Z(\mathcal{G}_{d_j-1}, B_{\mu}^{(d)}(x,u)) \right], \]

we shall next compute the dominant term in the singular expansion of \(U(x,u) \). For simplicity we will omit variables \((x,u)\) and degree \(d\).

\[U(x,u) = -\frac{kP_{1k}^{k+1}}{(k+1)!} + \frac{P_{1k}}{k!} \]

\[+ \frac{1}{k!} \sum_{j=1}^{M} x(u_j - 1) \left[Z(\mathcal{G}_{d_j}, B_{1k}^{(d)}) - Z(\mathcal{G}_{d_j-1}, B_{1k}^{(d)}) \right] + M_1, \]
Asymptotic analysis

The degree distribution of unlabeled k-trees

where M_1 is an analytic function around $(x,u) = (\rho_k,1)$. It is now convenient to write $U(x,u) = f(x,u) + h_1(x,u) \left[1 - \frac{x}{\rho_k(u)} \right]^{1/2}$. Then by substituting P_{1k}, B_{1k}^* with its representation in eq. (4) and eq. (3), we obtain

$$h_1(x,u) = \frac{s^k t}{(k-1)!} - \frac{t}{k!} + \frac{h}{k!} \sum_{j=1}^{M} x(u_j - 1)$$

$$\times \left[Z'(\mathcal{G}_{d_j-1},g,X_2,\cdots,X_{d_j-1}) - Z'(\mathcal{G}_{d_j},g,X_2,\cdots,X_{d_j}) \right]$$

where X_i are analytic functions around $(x,u) = (\rho_k,1)$ and Z' is the derivative w.r.t. the first variable of $Z(\mathcal{G}_k,x_1,\cdots,x_k)$, namely $Z'(\mathcal{G}_k,x_1,\cdots,x_k) = Z(\mathcal{G}_{k-1},x_1,\cdots,x_{k-1})$.
Asymptotic analysis

The degree distribution of unlabeled k-trees

Furthermore, by replacing s, t by $g = s^k$ and $h = ks^{k-1}t$, we can further simplify $h_1(x,u)$, that is

$$h_1(x,u) = \frac{h}{k!} g - \frac{1}{k} + \frac{h}{k!} \sum_{j=1}^M x(u_j - 1)$$

$$\times \left[Z'(S_{d_j-1}, g, X_2, \cdots, X_{d_j-1}) - Z'(S_{d_j}, g, X_2, \cdots, X_{d_j}) \right].$$

Now we use the fact that $y = g(\rho_k(u),u)$ and $x = \rho_k(u)$ is the solution of $S(x,y,u) = y$ and $S_y(x,y,u) = 1$, which yields

$$g(\rho_k(u),u) = \frac{1}{k} + g(\rho_k(u),u) \frac{k-1}{k} \sum_{j=1}^M x(u_j - 1)$$

$$\times \left[Z(S_{d_j-1}, g, X_2, \cdots, X_{d_j-1}) - Z'(S_{d_j-1}, g, X_2, \cdots, X_{d_j-1}) \right]$$
Asymptotic analysis

The degree distribution of unlabeled k-trees

and consequently \(h(ρ_k(u), u) \equiv 0 \) and \(U(x, u) \) has a local expansion around \((x, u) = (ρ_k, 1)\) of the form

\[
U(x, u) = w(x, u) + r(x, u) \left[1 - \frac{x}{ρ_k(u)} \right]^{3/2}.
\] (5)

where \(r(ρ_k(u), u) \neq 0 \) since \(r(ρ_k, 1) = r \neq 0 \) and \(w, r \) are analytic function around \((x, u) = (ρ_k, 1)\). Thus a central limit theorem follows. More precisely by setting \(A(u) = \log ρ_k(1) - \log ρ_k(u) \), \(μ = (A_{u_j}(1))_{1 ≤ j ≤ M} \) and \(Σ = (A_{u_i u_j}(1) + δ_{i,j} A_{u_j}(1))_{1 ≤ j ≤ M} \) then

\[
E(Y_{n,d}) = μ n + O(1) \text{ and } Cov(Y_{n,d}) = Σ n + O(1).
\]
Thanks for your attention!