Asymptotic Analysis of the Sum of the Output of Transducers

Sara Kropf

Alpen-Adria-Universität Klagenfurt

joint work with Clemens Heuberger and Helmut Prodinger

AofA, June 17th, 2014
Introduction

- We want to generalize
 - the sum of digits function,
 - the Hamming weight of a digit expansion, . . .
Introduction

- We want to generalize
 - the sum of digits function,
 - the Hamming weight of a digit expansion, . . .
- They can be computed by transducers.
 - They are the sum of the output.

binary sum of digits function (Delange, 1975)

```
0 0
1 1
```
Introduction

- We want to generalize
 - the sum of digits function,
 - the Hamming weight of a digit expansion, …
- They can be computed by transducers.
 - They are the sum of the output.
- We are interested in an asymptotic analysis:
 - central limit law
 - expected value and variance
 - probability space: \{0, 1, \ldots, N-1\} with equidistribution

binary sum of digits function (Delange, 1975)

\[
\begin{array}{c|c|c}
0 & 0 \\hline 1 & 1
\end{array}
\]

expected value = \(\frac{1}{2} \log_2 N + \Psi(\log_2 N) \)

with periodic, continuous \(\Psi \)
Sequences Defined by Transducers

- transducer T with a finite number of states
Sequences Defined by Transducers

- transducer \mathcal{T} with a finite number of states
- sequence $\mathcal{T}(n) = \text{sum of the output}$
- input: q-ary expansion of n
- read from right to left

Diagram:

```
1|0
0|1
0|0
1|1
```

Example with $n = 25$, $q = 2$:

- input: 11001
- output: 10101
- output sum: $\mathcal{T}(25) = 3$
Sequences Defined by Transducers

- transducer \mathcal{T} with a finite number of states
- sequence $\mathcal{T}(n) = $ sum of the output
- input: q-ary expansion of n
- read from right to left

Example with $n = 25$, $q = 2$

| input: 11001 | output sum: $\mathcal{T}(25) =$ | output: 10101 |
Sequences Defined by Transducers

- transducer \mathcal{T} with a finite number of states
- sequence $\mathcal{T}(n) = \text{sum of the output}$
- input: q-ary expansion of n
- read from right to left

Example with $n = 25$, $q = 2$

| input: | 11001 |
| output: | 1 |

output sum: $\mathcal{T}(25) =$
Sequences Defined by Transducers

- Transducer \mathcal{T} with a finite number of states
- Sequence $\mathcal{T}(n) = \text{sum of the output}$
- Input: q-ary expansion of n
- Read from right to left

Example with $n = 25$, $q = 2$

<table>
<thead>
<tr>
<th>Input:</th>
<th>11001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output:</td>
<td>11</td>
</tr>
</tbody>
</table>

Output sum: $\mathcal{T}(25) =$
Sequences Defined by Transducers

- transducer T with a finite number of states
- sequence $T(n) = \text{sum of the output}$
- input: q-ary expansion of n
- read from right to left

Example with $n = 25$, $q = 2$

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>11001</td>
<td>011</td>
</tr>
</tbody>
</table>
Sequences Defined by Transducers

- transducer \mathcal{T} with a finite number of states
- sequence $\mathcal{T}(n) = \text{sum of the output}$
- input: q-ary expansion of n
- read from right to left

Example with $n = 25$, $q = 2$

input: 11001
output: 1011

output sum: $\mathcal{T}(25) =$
Sequences Defined by Transducers

- transducer T with a finite number of states
- sequence $T(n) = \text{sum of the output}$
- input: q-ary expansion of n
- read from right to left

Example with $n = 25$, $q = 2$

- input: 11001
- output: 01011

output sum: $T(25) =$
Sequences Defined by Transducers

- transducer \(T \) with a finite number of states
- sequence \(T(n) = \) sum of the output
- input: \(q \)-ary expansion of \(n \)
- read from right to left

Example with \(n = 25, q = 2 \)

<table>
<thead>
<tr>
<th>input</th>
<th>output</th>
<th>output sum: (T(25) =)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11001</td>
<td>101011</td>
<td>4</td>
</tr>
</tbody>
</table>
Sequences Defined by Transducers

- transducer \mathcal{T} with a finite number of states
- sequence $\mathcal{T}(n) = \text{sum of the output}$
- input: q-ary expansion of n
- read from right to left

Example with $n = 25$, $q = 2$

input: 11001
output: 101011
output sum: $\mathcal{T}(25) = 4$
Paperfolding Sequence

Definition (paperfolding sequence)

\[n = 2^k m \text{ with } m \text{ odd}: \]

\[f_n = \begin{cases}
0 & \text{if } m \equiv 1 \text{ mod } 4 \\
1 & \text{if } m \equiv 3 \text{ mod } 4
\end{cases} \]
Paperfolding Sequence

\[f_n = \begin{cases} 0 & \text{if } m \equiv 1 \mod 4 \\ 1 & \text{if } m \equiv 3 \mod 4 \end{cases} \]
Paperfolding Sequence

\[f = \langle 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, \ldots \rangle \]

Definition (paperfolding sequence)

\[n = 2^k m \text{ with } m \text{ odd:} \]

\[f_n = \begin{cases}
0 & \text{if } m \equiv 1 \mod 4 \\
1 & \text{if } m \equiv 3 \mod 4
\end{cases} \]
Paperfolding Sequence

\[f = \langle 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, \ldots \rangle \]

Madill-Rampersad, 2013:
abelian complexity function of the paperfolding sequence:

\[\rho(n) = \text{number of different subwords of length } n \]

different = not abelian equivalent
\[= \text{have a different number of 1's} \]

\[\rho(2) = 3, \text{ due to } 1, 1 \text{ and } 1, 0 \text{ and } 0, 0 \text{ (not } 0, 1) \]
Theorem (Madill-Rampersad, 2013)

\[
\begin{align*}
\rho(4n) &= \rho(2n) \\
\rho(4n + 2) &= \rho(2n + 1) + 1 \\
\rho(16n + 1) &= \rho(8n + 1) \\
\rho(16n + 5) &= \rho(4n + 1) + 2 \\
\rho(16n + 11) &= \rho(4n + 3) + 2 \\
\rho(16n + 15) &= \rho(2n + 2) + 1 \\
\rho(16n + i) &= \rho(2n + 1) + 2 \\
&\text{for } i = 3, 7, 9, 13
\end{align*}
\]
Applications

- algorithms with finite memory usage
- digit expansions
- recursions

- everything can be done by a computer
Applications

- algorithms with finite memory usage
- digit expansions
- recursions

- everything can be done by a computer

- completely q-additive functions
- digital sequences
- q-automatic sequences
Asymptotic Analysis of $\mathcal{T}(n)$

- asymptotic expected value, variance of $\mathcal{T}(n)$
- with periodic fluctuations Ψ_1, Ψ_2
- central limit law
- non-differentiability of Ψ_1
- Fourier coefficients of Ψ_1
Asymptotic Analysis of $\mathcal{T}(n)$

- asymptotic expected value, variance of $\mathcal{T}(n)$
- with periodic fluctuations Ψ_1, Ψ_2
- central limit law
- non-differentiability of Ψ_1
- Fourier coefficients of Ψ_1

Results depend on connectivity properties of the transducer.
Connectivity Properties of the Transducer

- complete and deterministic \leadsto q-regular

$\begin{array}{c}
\text{0|?} \\
\text{1|?}
\end{array}$

for $q = 2$
Connectivity Properties of the Transducer

- complete and deterministic \rightsquigarrow q-regular
- final component
Connectivity Properties of the Transducer

- complete and deterministic \iff q-regular
- final component
- finally connected
Connectivity Properties of the Transducer

- complete and deterministic \leadsto \(q \)-regular
- final component
- finally connected
- period = greatest common divisor of all lengths of cycles
- final period \(p = \) least common multiple of the periods
- finally aperiodic if \(p = 1 \)

\[
\begin{align*}
\text{period: 1} \\
\text{period: 2} \\
\text{final period: } p = 2
\end{align*}
\]
Connectivity Properties of the Transducer

- complete and deterministic \rightarrow q-regular
- final component
- finally connected
- period = greatest common divisor of all lengths of cycles
- final period $p =$ least common multiple of the periods
- finally aperiodic if $p = 1$
- reset sequence

reset sequence: 01
Central Limit Theorem

Theorem (Heuberger-K.-Prodinger, 2014)

Let \(T \) be complete, deterministic, with input alphabet \{0, 1, \ldots, q - 1\} and final period \(p \). We use the probability space \{0, 1, \ldots, N - 1\} with equidistribution for a fixed \(N \).
Central Limit Theorem

Theorem (Heuberger-K.-Prodinger, 2014)

Let \(T \) be complete, deterministic, with input alphabet \(\{0, 1, \ldots, q - 1\} \) and final period \(p \). We use the probability space \(\{0, 1, \ldots, N - 1\} \) with equidistribution for a fixed \(N \).

Then \(T(n) \) has the expected value

\[
\mathbb{E}(T(n)) = e_T \log_q N + \Psi_1(\log_q N) + o(\log N)
\]

with \(e_T \) and a \(p \)-periodic, continuous function \(\Psi_1 \).
Central Limit Theorem

Theorem (Heuberger-K.-Prodinger, 2014)

Let \mathcal{T} be complete, deterministic, with input alphabet $\{0, 1, \ldots, q - 1\}$ and final period p. We use the probability space $\{0, 1, \ldots, N - 1\}$ with equidistribution for a fixed N. Then $\mathcal{T}(n)$ has the expected value

$$E(\mathcal{T}(n)) = e^\mathcal{T} \log_q N + \Psi_1(\log_q N) + o(\log N)$$

with \mathcal{T} and a p-periodic, continuous function Ψ_1.

If \mathcal{T} is finally connected, then the variance is

$$\nabla(\mathcal{T}(n)) = \nu_{\mathcal{T}} \log_q N + \Psi_2(\log_q N) + o(\log N)$$

with $\nu_{\mathcal{T}} \in \mathbb{R}$ and a p-periodic, continuous function Ψ_2.
Central Limit Theorem

Theorem (Heuberger-K.-Prodinger, 2014)

Let \(T \) be complete, deterministic, with input alphabet \(\{0, 1, \ldots, q - 1\} \) and final period \(p \). We use the probability space \(\{0, 1, \ldots, N - 1\} \) with equidistribution for a fixed \(N \). Then \(T(n) \) has the expected value

\[
E(T(n)) = e_T \log_q N + \Psi_1(\log_q N) + o(\log N)
\]

with \(e_T \) and a \(p \)-periodic, continuous function \(\Psi_1 \).

If \(T \) is finally connected, then the variance is

\[
\mathbb{V}(T(n)) = \nu_T \log_q N + \Psi_2(\log_q N) + o(\log N)
\]

with \(\nu_T \in \mathbb{R} \) and a \(p \)-periodic, continuous function \(\Psi_2 \).

If \(\nu_T \neq 0 \), then \(T(n) \) is asymptotically normally distributed.
Central Limit Theorem

Theorem (Heuberger-K.-Prodinger, 2014)

Let \mathcal{T} be **complete**, **deterministic**, with input alphabet
\{0, 1, \ldots, q − 1\} and **final period** p. We use the probability space
\{0, 1, \ldots, N − 1\} with equidistribution for a fixed N.
Then $\mathcal{T}(n)$ has the expected value

$$E(\mathcal{T}(n)) = e^\mathcal{T} \log_q N + \Psi_1(\log_q N) + o(\log N)$$

with $e^\mathcal{T}$ and a p-periodic, continuous function Ψ_1.

If \mathcal{T} is **finally connected**, then the variance is

$$\mathbb{V}(\mathcal{T}(n)) = \nu^\mathcal{T} \log_q N + \Psi_2(\log_q N) + o(\log N)$$

with $\nu^\mathcal{T} \in \mathbb{R}$ and a p-periodic, continuous function Ψ_2.

If $\nu^\mathcal{T} \neq 0$, then $\mathcal{T}(n)$ is asymptotically normally distributed.

Also possible for higher dimensional n.
Idea of the Proof

We consider the characteristic function of $\mathcal{T}(n)$

$$F(N; t) = \sum_{0 \leq n < N} e^{it\mathcal{T}(n)} = \mathbf{e}_1^\top \sum_{n=0}^{L} M^n H_{\varepsilon_n}((\varepsilon_L \ldots \varepsilon_{n+1})_q) \mathbf{u}$$

with $N = (\varepsilon_L \ldots \varepsilon_0)_q$ the q-ary expansion of N
Idea of the Proof

- We consider the characteristic function of $\mathcal{T}(n)$

\[F(N; t) = \sum_{0 \leq n < N} e^{it\mathcal{T}(n)} = e_1^\top \sum_{n=0}^{L} M^n H_{\varepsilon_n}((\varepsilon_L \ldots \varepsilon_{n+1})_q) u \]

- with $N = (\varepsilon_L \ldots \varepsilon_0)_q$ the q-ary expansion of N
- and

\[M = \sum_{\varepsilon=0}^{q-1} M_\varepsilon \]

with M_ε a matrix with entry $e^{it\delta}$ at position r, s if there is a transition $r \xrightarrow{\varepsilon|\delta} s$.
Idea of the Proof

- eigenvalues of M at $t = 0$
- strongly connected components
- non-final components not important
Idea of the Proof

- eigenvalues of M at $t = 0$
- strongly connected components
- non-final components not important
- eigenvalues q and $qe^{2\pi ik/p}$ for some $k \in \mathbb{Z}$
Idea of the Proof

\[F(N; t) = \sum_{0 \leq n < N} e^{it\mathcal{T}(n)} = e_1^T \sum_{n=0}^L M^n H_{\varepsilon_n}((\varepsilon_L \ldots \varepsilon_{n+1})_q)u \]

- We split up \(F(N; t) \) into a part for the dominant eigenvalues and a remainder.
Idea of the Proof

\[F(N; t) = \sum_{0 \leq n < N} e^{itT(n)} = e_1^T \sum_{n=0}^{L} M^n H_{\epsilon_n}((\epsilon_L \ldots \epsilon_{n+1})_q) u \]

- We split up \(F(N; t) \) into a part for the dominant eigenvalues and a remainder.
- Differentiation w.r.t. \(t \) \(\leadsto \) expected value and variance
- \(\Psi_1 \) and \(\Psi_2 \) are expressed by infinite sums.
Idea of the Proof

\[F(N; t) = \sum_{0 \leq n < N} e^{itT(n)} = e_1^\top \sum_{n=0}^{L} M^n H_{\varepsilon_n}((\varepsilon_L \ldots \varepsilon_{n+1})_q)u \]

- We split up \(F(N; t) \) into a part for the dominant eigenvalues and a remainder.
- Differentiation w.r.t. \(t \) \(\leadsto \) expected value and variance
- \(\Psi_1 \) and \(\Psi_2 \) are expressed by infinite sums.
- Berry–Esseen inequality \(\leadsto \) asymptotic normality and speed of convergence \(O(\log^{-1/4} N) \)
Transducer is complete, deterministic, finally connected and the final period is 1.
Paperfolding Sequence

Transducer is complete, deterministic, finally connected and the final period is 1.

\[
\mathbb{E}(\rho(n)) = \frac{8}{13} \log_2 N + \Psi_1(\log_2 N) + o(\log N)
\]

\[
\mathbb{V}(\rho(n)) = \frac{432}{2197} \log_2 N + \Psi_2(\log_2 N) + o(\log N)
\]

\(\Psi_1\) and \(\Psi_2\) are 1-periodic and continuous.
Paperfolding Sequence

Transducer is complete, deterministic, finally connected and the final period is 1.

\[
E(\rho(n)) = \frac{8}{13} \log_2 N + \Psi_1(\log_2 N) + o(\log N)
\]

\[
\nabla(\rho(n)) = \frac{432}{2197} \log_2 N + \Psi_2(\log_2 N) + o(\log N)
\]

\(\Psi_1\) and \(\Psi_2\) are 1-periodic and continuous.

\(\sim\) asymptotically normally distributed
Fourier Coefficients

Theorem (Heuberger-K.-Prodinger, 2014)

Assume that the transducer is *finally connected, finally aperiodic*. Then the Fourier coefficients of Ψ_1 are

$$c_0 = -\frac{e^T}{2} + b_0 + \frac{1}{\log q} b_1 + \text{Res}_{z=1} H(z),$$

$$c_\ell = \frac{e^T}{\chi_\ell \log q} + \frac{1}{(1 + \chi_\ell) \log q} b_1 + \frac{1}{1 + \chi_\ell} \text{Res}_{z=1+\chi_\ell} H(z)$$

for $\ell \neq 0$, $\chi_\ell = \frac{2\pi i \ell}{\log q}$ and $b_0, b_1 \in \mathbb{R}$.

The Dirichlet function $H(z)$ satisfies an infinite recursion.
Paperfolding Sequence: Ψ_1

partial Fourier series with 24 Fourier coefficients
empirical values
Non-Differentiability

Theorem (Heuberger-K.-Prodinger, 2014)

Assume that the transducer has a reset sequence, the output alphabet is \mathbb{Z} and that $e_T \notin \mathbb{Z}$.

Then Ψ_1 is non-differentiable for every $x \in \mathbb{R}$.

- often used reset sequence: $0 \cdots 0$
- paperfolding sequence: reset sequence 00001
 \leadsto non-differentiable Ψ_1
Theorem (Heuberger-K.-Prodinger, 2014)

Assume that the transducer has a reset sequence, the output alphabet is \mathbb{Z} and that $e_T \notin \mathbb{Z}$.
Then Ψ_1 is non-differentiable for every $x \in \mathbb{R}$.

- often used reset sequence: $0 \cdots 0$
- paperfolding sequence: reset sequence 00001
 \leadsto non-differentiable Ψ_1
- The existence of a reset sequence is not guaranteed.
Recursions and Transducers

Paperfolding sequence

\[
\begin{align*}
\rho(4n) &= \rho(2n) & \rho(16n + 11) &= \rho(4n + 3) + 2 \\
\rho(4n + 2) &= \rho(2n + 1) + 1 & \rho(16n + 15) &= \rho(2n + 2) + 1 \\
\rho(16n + 1) &= \rho(8n + 1) & \rho(16n + i) &= \rho(2n + 1) + 2 \\
\rho(16n + 5) &= \rho(4n + 1) + 2 & \text{for } i = 3, 7, 9, 13
\end{align*}
\]

Recursions similar to the paperfolding sequence:

\[
\rho(q^k n + \lambda) = \rho(q^{k_\lambda} n + r_\lambda) + t_\lambda \quad \text{for } 0 \leq \lambda < q^k
\]

with \(0 \leq k_\lambda < k\)
Recursions similar to the paperfolding sequence:

\[\rho(q^n + \lambda) = \rho(q^{\lambda} n + r_\lambda) + t_\lambda \quad \text{for} \quad 0 \leq \lambda < q^k \]

Construction:

- assume here \(0 \leq r_\lambda < q^{\lambda} \)
- tree of depth \(k - 1 \)

for \(q = 2, k = 3 \)
Recursions and Transducers

Recursions similar to the paperfolding sequence:

$$\rho(q^n + \lambda) = \rho(q^{\lambda n} + r) + t\lambda \quad \text{for} \quad 0 \leq \lambda < q^k$$

Construction:

- assume here $0 \leq r_\lambda < q^{k\lambda}$
- tree of depth $k - 1$
- transitions

$$(\ell \mod q^{k-1}) \xrightarrow{c|t\lambda} (r_\lambda \mod q^{k\lambda})$$

with $\lambda = q^{k-1}c + \ell$

for $q = 2, k = 3$
Conclusion

- We can asymptotically analyze sequences.
- The sequence is the output sum of a transducer.
- Joint generalization of many results.
- Everything is implemented (e.g. in Sage).
- We obtain different results, depending on the properties of the transducer.
Conclusion

- We can asymptotically analyze sequences.
- The sequence is the output sum of a transducer.
- Joint generalization of many results.
- Everything is implemented (e.g., in Sage).
- We obtain different results, depending on the properties of the transducer.

- What happens if assumptions are not satisfied?
 - no reset sequence: differentiability of Ψ_1?
 - not finally connected: central limit law?