Pivot Sampling in Dual-Pivot Quicksort

Sebastian Wild Markus E. Nebel
[wild, nebel]@cs.uni-kl.de

16 June 2014

25th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the

Analysis of Algorithms
Almost identical Quicksort in all programming libraries!

2009: Java switches to Yaroslavskiy’s algorithm

- Dual-Pivot Quicksort with **new** partitioning method
- Faster running time
- No proper analysis at that time

Why not earlier?

- Other dual-pivot variants had been studied
- Could **not** beat classic Quicksort
Almost identical Quicksort in all programming libraries!

- 2009: Java switches to Yaroslavskiy’s algorithm
 - Dual-Pivot Quicksort with new partitioning method
 - Faster running time
 - No proper analysis at that time

Why not earlier?

- Other dual-pivot variants had been studied
- Could not beat classic Quicksort
Almost identical Quicksort in all programming libraries!

2009: Java switches to **Yaroslavskiy’s algorithm**

- **Dual-Pivot** Quicksort with **new** partitioning method
- Faster running time
- No proper analysis at that time

Why not earlier?

- Other dual-pivot variants had been studied
- Could **not** beat classic Quicksort
Almost identical Quicksort in all programming libraries!

2009: Java switches to Yaroslavskiy’s algorithm

- **Dual-Pivot** Quicksort with new partitioning method
- Faster running time
- No proper analysis at that time

Why not earlier?

- Other dual-pivot variants had been studied
- Could **not** beat classic Quicksort
Previous Results (Average Case)

<table>
<thead>
<tr>
<th></th>
<th>Classic</th>
<th>Dual-Pivot</th>
<th>Relative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Running Time</td>
<td></td>
<td>(from various experiments)</td>
<td>±10±2%</td>
</tr>
<tr>
<td>Comparisons</td>
<td>$2n \ln n$</td>
<td>$1.9n \ln n$</td>
<td>−5%</td>
</tr>
<tr>
<td>Swaps</td>
<td>$0.3n \ln n$</td>
<td>$0.6n \ln n$</td>
<td>+80%</td>
</tr>
<tr>
<td>Bytecode Instructions</td>
<td>$18n \ln n$</td>
<td>$21.7n \ln n$</td>
<td>+20.6%</td>
</tr>
<tr>
<td>MMIX oops υ</td>
<td>$11n \ln n$</td>
<td>$13.1n \ln n$</td>
<td>+19.1%</td>
</tr>
<tr>
<td>MMIX mems μ</td>
<td>$2.6n \ln n$</td>
<td>$2.8n \ln n$</td>
<td>+5%</td>
</tr>
<tr>
<td>fresh elements (∝ cache misses)</td>
<td>$2n \ln n$</td>
<td>$1.6n \ln n$</td>
<td>−20%</td>
</tr>
</tbody>
</table>

+ $O(n)$, average case results

Results for pivots at fixed positions.
Previous Results (Average Case)

<table>
<thead>
<tr>
<th></th>
<th>Classic</th>
<th>Dual-Pivot</th>
<th>Relative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Running Time</td>
<td>(from various experiments)</td>
<td></td>
<td>−10 ± 2%</td>
</tr>
<tr>
<td>Comparisons</td>
<td>2$n \ln n$</td>
<td>1.9$n \ln n$</td>
<td>−5%</td>
</tr>
<tr>
<td>Swaps</td>
<td>0.3$n \ln n$</td>
<td>0.6$n \ln n$</td>
<td>+80%</td>
</tr>
<tr>
<td>Bytecode Instructions</td>
<td>18$n \ln n$</td>
<td>21.7$n \ln n$</td>
<td>+20.6%</td>
</tr>
<tr>
<td>MMIX oops ν</td>
<td>11$n \ln n$</td>
<td>13.1$n \ln n$</td>
<td>+19.1%</td>
</tr>
<tr>
<td>MMIX mems μ</td>
<td>2.6$n \ln n$</td>
<td>2.8$n \ln n$</td>
<td>+5%</td>
</tr>
<tr>
<td>fresh elements (≈ cache misses)</td>
<td>2$n \ln n$</td>
<td>1.6$n \ln n$</td>
<td>−20%</td>
</tr>
</tbody>
</table>

+ $O(n)$, average case results

Results for pivots at fixed positions.
Previous Results (Average Case)

<table>
<thead>
<tr>
<th></th>
<th>Classic</th>
<th>Dual-Pivot</th>
<th>Relative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Running Time</td>
<td>(from various experiments)</td>
<td></td>
<td>−10±2%</td>
</tr>
<tr>
<td>Comparisons</td>
<td>$2n \ln n$</td>
<td>$1.9n \ln n$</td>
<td>−5%</td>
</tr>
<tr>
<td>Swaps</td>
<td>$0.3n \ln n$</td>
<td>$0.6n \ln n$</td>
<td>+80%</td>
</tr>
<tr>
<td>Bytecode Instructions</td>
<td>$18n \ln n$</td>
<td>$21.7n \ln n$</td>
<td>+20.6%</td>
</tr>
<tr>
<td>MMIX oops ν</td>
<td>$11n \ln n$</td>
<td>$13.1n \ln n$</td>
<td>+19.1%</td>
</tr>
<tr>
<td>MMIX mems μ</td>
<td>$2.6n \ln n$</td>
<td>$2.8n \ln n$</td>
<td>+5%</td>
</tr>
<tr>
<td>fresh elements (\approx cache misses)</td>
<td>$2n \ln n$</td>
<td>$1.6n \ln n$</td>
<td>−20%</td>
</tr>
</tbody>
</table>

+ $O(n)$, average case results

Results for pivots at fixed positions.
Previous Results (Average Case)

<table>
<thead>
<tr>
<th></th>
<th>Classic</th>
<th>Dual-Pivot</th>
<th>Relative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Running Time</td>
<td>(from various experiments)</td>
<td></td>
<td>$-10 \pm 2%$</td>
</tr>
<tr>
<td>Comparisons</td>
<td>$2n \ln n$</td>
<td>$1.9n \ln n$</td>
<td>$-5%$</td>
</tr>
<tr>
<td>Swaps</td>
<td>$0.3n \ln n$</td>
<td>$0.6n \ln n$</td>
<td>$+80%$</td>
</tr>
<tr>
<td>Bytecode Instructions</td>
<td>$18n \ln n$</td>
<td>$21.7n \ln n$</td>
<td>$+20.6%$</td>
</tr>
<tr>
<td>MMIX oops ν</td>
<td>$11n \ln n$</td>
<td>$13.1n \ln n$</td>
<td>$+19.1%$</td>
</tr>
<tr>
<td>MMIX mems μ</td>
<td>$2.6n \ln n$</td>
<td>$2.8n \ln n$</td>
<td>$+5%$</td>
</tr>
<tr>
<td>fresh elements (\approx cache misses)</td>
<td>$2n \ln n$</td>
<td>$1.6n \ln n$</td>
<td>$-20%$</td>
</tr>
</tbody>
</table>

+ $O(n)$, average case results

Results for pivots at fixed positions.
Previous Results (Average Case)

<table>
<thead>
<tr>
<th></th>
<th>Classic</th>
<th>Dual-Pivot</th>
<th>Relative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Running Time</td>
<td>(from various experiments)</td>
<td></td>
<td>−10±2%</td>
</tr>
<tr>
<td>Comparisons</td>
<td>$2n \ln n$</td>
<td>$1.9n \ln n$</td>
<td>−5%</td>
</tr>
<tr>
<td>Swaps</td>
<td>$0.3n \ln n$</td>
<td>$0.6n \ln n$</td>
<td>+80%</td>
</tr>
<tr>
<td>Bytecode Instructions</td>
<td>$18n \ln n$</td>
<td>$21.7n \ln n$</td>
<td>+20.6%</td>
</tr>
<tr>
<td>MMIX oops υ</td>
<td>$11n \ln n$</td>
<td>$13.1n \ln n$</td>
<td>+19.1%</td>
</tr>
<tr>
<td>MMIX mems µ</td>
<td>$2.6n \ln n$</td>
<td>$2.8n \ln n$</td>
<td>+5%</td>
</tr>
<tr>
<td>fresh elements (≈ cache misses)</td>
<td>$2n \ln n$</td>
<td>$1.6n \ln n$</td>
<td>−20%</td>
</tr>
</tbody>
</table>

+ O(n), average case results

Results for pivots at fixed positions.

... nobody uses that!

Here: Choosing pivots from sample.
Previous Results (Average Case)

<table>
<thead>
<tr>
<th></th>
<th>Classic</th>
<th>Dual-Pivot</th>
<th>Relative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Running Time</td>
<td>(from various experiments)</td>
<td></td>
<td>−10±2%</td>
</tr>
<tr>
<td>Comparisons</td>
<td>$2n \ln n$</td>
<td>$1.9n \ln n$</td>
<td>−5%</td>
</tr>
<tr>
<td>Swaps</td>
<td>$0.3n \ln n$</td>
<td>$0.6n \ln n$</td>
<td>+80%</td>
</tr>
<tr>
<td>Bytecode Instructions</td>
<td>$18n \ln n$</td>
<td>$21.7n \ln n$</td>
<td>+20.6%</td>
</tr>
<tr>
<td>MMIX oops ν</td>
<td>$11n \ln n$</td>
<td>$13.1n \ln n$</td>
<td>+19.1%</td>
</tr>
<tr>
<td>MMIX mems μ</td>
<td>$2.6n \ln n$</td>
<td>$2.8n \ln n$</td>
<td>+5%</td>
</tr>
<tr>
<td>fresh elements (≈ cache misses)</td>
<td>$2n \ln n$</td>
<td>$1.6n \ln n$</td>
<td>−20%</td>
</tr>
</tbody>
</table>

+ $O(n)$, average case results

Results for pivots at fixed positions. ... nobody uses that!

Here: Choosing pivots from sample.
Algorithm (Conceptual View)

1. Choose **two pivots** $P \leq Q$
2. For each element x, determine its **class**
 - **Small** for $x < P$
 - **Medium** for $P < x < Q$
 - **Large** for $Q < x$

by comparing x to **pivots** P and Q

3. Arrange elements according to classes:

4. Sort subarrays recursively.

How to implement efficiently on arrays?
Dual Pivot Quicksort

Algorithm (Conceptual View)

1. Choose two pivots \(P \leq Q \)
2. For each element \(x \), determine its class
 - **small** for \(x < P \)
 - **medium** for \(P < x < Q \)
 - **large** for \(Q < x \)
 by comparing \(x \) to pivots \(P \) and \(Q \)
3. Arrange elements according to classes:

 ![Diagram of elements arranged by classes]

4. Sort subarrays recursively.

How to implement efficiently on arrays?
Dual Pivot Quicksort

Algorithm (Conceptual View)

1. Choose **two pivots** $P \leq Q$
2. For each element x, determine its **class**
 - **small** for $x < P$
 - **medium** for $P < x < Q$
 - **large** for $Q < x$
 by comparing x to pivots P and Q
3. Arrange elements according to classes:

![Diagram of classes]

4. Sort subarrays recursively.

How to implement 3 efficiently on arrays?
Dual Pivot Quicksort

Algorithm (Conceptual View)

1. Choose two pivots $P \leq Q$
2. For each element x, determine its class
 - small for $x < P$
 - medium for $P < x < Q$
 - large for $Q < x$
 by comparing x to pivots P and Q
3. Arrange elements according to classes:

```
P       Q
```
4. Sort subarrays recursively.

How to implement efficiently on arrays?
Yaroslavskiy’s Algorithm

Invariant:

<table>
<thead>
<tr>
<th>P</th>
<th>k</th>
<th>g</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>5</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>8</td>
<td>6</td>
</tr>
</tbody>
</table>
Yaroslavskiy’s Algorithm

Invariant: P Q
Yaroslavskiy’s Algorithm

Invariant: P ___________________ Q
Yaroslavskiy’s Algorithm

Invariant: P ______ Q
Yaroslavskiy’s Algorithm

Invariant:

\[P \leq o \leq Q \]
Yaroslavskiy’s Algorithm

Invariant: \(P \leq o \leq Q \)
Yaroslavskiy’s Algorithm

Invariant: $P \leq o \leq Q$
Yaroslavskiy’s Algorithm

Invariant: P < P \leq o \leq Q
Yaroslavskiy’s Algorithm

Invariant: $P < P \leq 0 \leq Q$
Yaroslavskiy’s Algorithm

Invariant:

Dual-Pivot Quicksort
Yaroslavskiy’s Algorithm

Invariant: \(P < P < P \leq Q \leq Q \)
Yaroslavskiy’s Algorithm

Invariant: \[P < P \leq Q \leq Q \]

Diagram: [Diagram showing the algorithm with decision nodes and data elements]

Legend:
- \(< P \)
- \(> Q \)
- \(< Q \)
- \(> P \)
- \(\leq \leq \)
- \(\iff \)
- \(\neg \)
- \(\neg \neg \)
- \(\equiv \}

Data Elements:
- \(P \): 3, 1, 5, 7
- \(Q \): 4, 2, 8, 6

Algorithm:
- If \(< P \):
 - If \(\leq \leq \)
 - Swap \(\ell \)
 - Skip
- If \(> Q \):
 - Skip
- If \(< Q \):
 - Swap \(g \)
- If \(> P \):
 - Swap \(k \)
Yaroslavskiy’s Algorithm

![Diagram of Yaroslavskiy’s Algorithm]

Invariant:

- **P:** Elements less than the pivot.
- **Q:** Elements greater than or equal to the pivot.
- **P ≤ o ≤ Q:** Elements in the range between the pivot and the current pivot.

Example:

- Elements: 3, 1, 5, 7, 2, 8, 6
- Pivot: 4

The algorithm sorts elements based on their relationship to the pivot, ensuring the invariant is maintained throughout the sorting process.
Yaroslavkiy’s Algorithm

Invariant:

\[P \leq \circ \leq Q \]
Yaroslavskiy’s Algorithm

Invariant:

\[
P < P \quad P \leq o \leq Q \quad Q \geq Q
\]
Yaroslavskiy’s Algorithm

- If \(< P \) then:
 - \(\ell \) to \(\ell \)
 - \(\llcorner \) to \(\llcorner \)

- If \(< Q \) then:
 - \(\llcorner \) to \(\llcorner \)

- If \(> Q \) then:
 - \(\ell \) to \(\ell \)
 - \(\llcorner \) to \(\llcorner \)

Invariant:

\[
\begin{array}{c}
P < P \quad P \leq \circ \leq Q \\
\end{array}
\]
Yaroslavskiy’s Algorithm

Invariant:

P \quad < P \quad P \leq o \leq Q \quad \geq Q \quad Q
Yaroslavskiy’s Algorithm

Invariant: \(P < P \leq \leq Q \geq Q \)
Yaroslavskiy’s Algorithm

Swap ℓ if $< P$?

Swap g if $< Q$?

Swap ℓ if $\leq P$.

Swap k if $\geq Q$.

Dual-Pivot Quicksort

Invariant:
Yaroslavskiy’s Algorithm

\[< P? \]
\[> Q? \]
\[\text{swap } \ell \]
\[\text{skip} \]
\[< Q? \]
\[\text{swap } g \]
\[> Q? \]
\[\text{skip} \]
\[< P? \]
\[\text{swap } \ell \]
\[\text{swap } k \]

P:
3 1 2 5 4

Q:
7 8 6
Yaroslavskiy’s Algorithm

\[
\begin{array}{c}
\text{\textbf{Yaroslavskiy’s Algorithm}} \\
\end{array}
\]

\[
\begin{array}{c}
\text{Dual-Pivot Quicksort} \\
2014-06-16 5 / 16
\end{array}
\]
Yaroslavskiy’s Algorithm

- `< P?` with options: swap ℓ, skip
- `< Q?` with options: swap ℓ, swap g

- `> Q?` with options: swap ℓ, swap k, skip
- `< P?` with options: skip

Sebastian Wild

Dual-Pivot Quicksort

2014-06-16 5 / 16
Pivot Sampling

- Classic Quicksort: pivot as median of k
 (in practice: $k = 3$, pseudomedian of 9)

- We need two pivots.

- Here: parametric scheme with parameter $t = (t_1, t_2, t_3)$
 1. Sample $k = t_1 + t_2 + t_3 + 2$ elements
 2. Sort the sample
 3. Select pivots s.t. in sorted sample

 - t_1 smaller
 - t_2 between
 - t_3 larger than pivots

- ALENEX 2013:
 Empirical evidence that asymmetric $t = (0, 1, 2)$ beats $t = (1, 1, 1)$!
Pivot Sampling

- Classic Quicksort: pivot as **median of** k
 (in practice: $k = 3$, pseudomedian of 9)

- We need **two** pivots.

 - **Here:** parametric scheme with parameter $t = (t_1, t_2, t_3)$
 1. Sample $k = t_1 + t_2 + t_3 + 2$ elements
 2. Sort the sample
 3. Select pivots s. t. in sorted sample

 | t_1 smaller, | Example with $k = 8$ and $t = (3, 2, 1)$: | | |
 | t_2 between and | P | Q |
 | t_3 larger than pivots| t_1 | t_2 | t_3 |

- ALENEX 2013:
 Empirical evidence that **asymmetric** $t = (0, 1, 2)$ beats $t = (1, 1, 1)$!
Pivot Sampling

- Classic Quicksort: pivot as median of \(k \)
 (in practice: \(k = 3 \), pseudomedian of 9)

- We need two pivots.

- Here: parametric scheme with parameter \(t = (t_1, t_2, t_3) \)
 1. Sample \(k = t_1 + t_2 + t_3 + 2 \) elements
 2. Sort the sample
 3. Select pivots s.t. in sorted sample

\[t_1 \text{ smaller}, \quad t_2 \text{ between}, \quad t_3 \text{ larger} \quad \text{than pivots} \]

Example with \(k = 8 \) and \(t = (3, 2, 1) \):

ALENEX 2013:

Empirical evidence that asymmetric \(t = (0, 1, 2) \) beats \(t = (1, 1, 1) \)!
Pivot Sampling

- Classic Quicksort: pivot as median of \(k \)
 (in practice: \(k = 3 \), pseudomedian of 9)
- We need **two** pivots.
- **Here:** parametric scheme with parameter \(t = (t_1, t_2, t_3) \)
 1. Sample \(k = t_1 + t_2 + t_3 + 2 \) elements
 2. **Sort** the sample
 3. Select pivots s. t. in sorted sample

\[t_1 \text{ smaller}, \quad t_2 \text{ between} \quad \text{and} \quad t_3 \text{ larger than pivots} \]

Example with \(k = 8 \) and \(t = (3, 2, 1) \):

- ALENEX 2013:
 Empirical evidence that **asymmetric** \(t = (0, 1, 2) \) beats \(t = (1, 1, 1) \)!
Goal: Count *comparisons* in Dual-Pivot Quicksort with Pivot Sampling

C_n: (random!) #cmps to sort n i.i.d. $Uniform(0, 1)$ elements

\leadsto Distributional Recurrence:

$$C_n \overset{D}{=} T_n + C_{J_1} + C_{J_2} + C_{J_3}$$

- $J = (J_1, J_2, J_3)$: (random) subproblem sizes
- T_n: (random) #cmps of first partitioning step

\leadsto Taking expectations and conditioning on J:

$$E[C_n] = E[T_n] + \sum_{j=0}^{n-2} w_{n,j} E[C_j]$$

with $w_{n,j} = \Pr[J_1 = j] + \Pr[J_2 = j] + \Pr[J_3 = j]$
Expected Number of Comparisons

Goal: Count *comparisons* in Dual-Pivot Quicksort with Pivot Sampling

C_n: (random!) #cmps to sort n i.i.d. *Uniform*(0, 1) elements

 Arnab \[\text{Distributional Recurrence:} \]

$$C_n \overset{D}{=} T_n + C_{J_1} + C_{J_2} + C_{J_3}$$

- $J = (J_1, J_2, J_3)$: (random) subproblem sizes
- T_n: (random) #cmps of first partitioning step

Arnab \[\text{Taking expectations and conditioning on } J: \]

$$E[C_n] = E[T_n] + \sum_{j=0}^{n-2} w_{n,j} E[C_j]$$

with $w_{n,j} = Pr[J_1 = j] + Pr[J_2 = j] + Pr[J_3 = j]$
Goal: Count comparisons in Dual-Pivot Quicksort with Pivot Sampling

\(\mathbb{E}[C_n] = \mathbb{E}[T_n] + \sum_{j=0}^{n-2} w_{n,j} \mathbb{E}[C_j] \)

with \(w_{n,j} = \Pr[J_1 = j] + \Pr[J_2 = j] + \Pr[J_3 = j] \)
Solution of Recurrence

Recurrence: \(\mathbb{E}[C_n] = \mathbb{E}[T_n] + \sum_{j=0}^{n-2} w_{n,j} \mathbb{E}[C_j] \) with \(\mathbb{E}[T_n] \sim \gamma n \)

Apply *Continuous Master Theorem* [Roura 2001]

Idea: Approximate sum by integral over relative subproblem size \(\alpha = j/n \)

\[
\sum_{j=0}^{n-2} w_{n,j} \mathbb{E}[C_j] \approx \int_{0}^{n} w_{n,j} \mathbb{E}[C_j] \, dj \approx \int_{0}^{1} n \cdot w_{n,\alpha n} \mathbb{E}[C_{\alpha n}] \, d\alpha
\]

\[
\Rightarrow \text{Continuous Recurrence: } \mathbb{E}[C_n] \approx \mathbb{E}[T_n] + \int_{0}^{1} w(\alpha) \mathbb{E}[C_{\alpha n}] \, d\alpha
\]

Ansatz: \(\mathbb{E}[C_n] = \gamma n \ln n \)

\[
\Rightarrow \text{fulfills recurrence for } T_n = \sum_{k=1}^{n} \frac{n+1}{k+1} (2k+1 - 2(n+1))
\]
Solution of Recurrence

Recurrence: $\mathbb{E}[C_n] = \mathbb{E}[T_n] + \sum_{j=0}^{n-2} w_{n,j} \mathbb{E}[C_j]$ with $\mathbb{E}[T_n] \sim \gamma n$

Apply *Continuous Master Theorem* [Roura 2001]

Idea: Approximate sum by integral over relative subproblem size $\alpha = j/n$

$$\sum_{j=0}^{n-2} w_{n,j} \mathbb{E}[C_j] \approx \int_0^n w_{n,j} \mathbb{E}[C_j] \, dj \approx \int_0^1 n \cdot w_{n,\alpha n} \mathbb{E}[C_{\alpha n}] \, d\alpha$$

\Rightarrow Continuous Recurrence: $\mathbb{E}[C_n] \approx \mathbb{E}[T_n] + \int_0^1 w(\alpha) \mathbb{E}[C_{\alpha n}] \, d\alpha$

Ansatz: $\mathbb{E}[C_n] = \frac{\gamma}{H} n \ln n$

\Rightarrow fulfills recurrence for $H = \sum_{l=1}^3 \frac{t_l + 1}{k + 1} (\mathcal{H}_{k+1} - \mathcal{H}_{t_l+1})$

\Rightarrow $\mathbb{E}[C_n] \sim \frac{\gamma}{H} n \ln n$

Next: What is γ?
Solution of Recurrence

Recurrence: \(\mathbb{E}[C_n] = \mathbb{E}[T_n] + \sum_{j=0}^{n-2} w_{n,j} \mathbb{E}[C_j] \) with \(\mathbb{E}[T_n] \sim \gamma n \)

Apply *Continuous Master Theorem* [Roura 2001]

Idea: Approximate sum by integral over relative subproblem size \(\alpha = j/n \)

\[
\sum_{j=0}^{n-2} w_{n,j} \mathbb{E}[C_j] \approx \int_0^n w_{n,j} \mathbb{E}[C_j] \, dj \approx \int_0^1 n \cdot w_{n,\alpha n} \mathbb{E}[C_{\alpha n}] \, d\alpha
\]

\(\rightsquigarrow \) **Continuous Recurrence:** \(\mathbb{E}[C_n] \approx \mathbb{E}[T_n] + \int_0^1 w(\alpha) \mathbb{E}[C_{\alpha n}] \, d\alpha \)

Ansatz: \(\mathbb{E}[C_n] = \frac{\gamma}{H} n \ln n \)

\(\rightsquigarrow \) fulfills recurrence for \(H = \sum_{l=1}^{3} \frac{t_l + 1}{k + 1} (\mathcal{H}_{k+1} - \mathcal{H}_{t_l+1}) \)

\(\rightsquigarrow \mathbb{E}[C_n] \sim \frac{\gamma}{H} n \ln n \)

Next: What is \(\gamma \)?
Solution of Recurrence

Recurrence: $E[C_n] = E[T_n] + \sum_{j=0}^{n-2} w_{n,j} E[C_j]$ with $E[T_n] \sim \gamma n$

Apply *Continuous Master Theorem* [Roura 2001]

Idea: Approximate sum by integral over relative subproblem size $\alpha = j/n$

$$\sum_{j=0}^{n-2} w_{n,j} E[C_j] \approx \int_0^n w_{n,j} E[C_j] \, dj \approx \int_0^1 n \cdot w_{n,\alpha n} E[C_{\alpha n}] \, d\alpha$$

$\rightarrow w(\alpha)$

\Rightarrow Continuous Recurrence: $E[C_n] \approx E[T_n] + \int_0^1 w(\alpha) E[C_{\alpha n}] \, d\alpha$

Ansatz: $E[C_n] = \frac{\gamma}{H} n \ln n$

\Rightarrow fulfills recurrence for $H = \sum_{l=1}^{3} \frac{t_l + 1}{k + 1} (H_{k+1} - H_{t_l + 1})$

$\Rightarrow E[C_n] \sim \frac{\gamma}{H} n \ln n$

Next: What is γ?
Solution of Recurrence

Recurrence: $\mathbb{E}[C_n] = \mathbb{E}[T_n] + \sum_{j=0}^{n-2} w_{n,j} \mathbb{E}[C_j]$ with $\mathbb{E}[T_n] \sim \gamma n$

Apply **Continuous Master Theorem** [Roura 2001]

Idea: Approximate sum by integral over relative subproblem size $\alpha = j/n$

$$\sum_{j=0}^{n-2} w_{n,j} \mathbb{E}[C_j] \approx \int_0^n w_{n,j} \mathbb{E}[C_j] \, dj \approx \int_0^1 n \cdot w_{n,\alpha n} \mathbb{E}[C_{\alpha n}] \, d\alpha \to w(\alpha)$$

\sim **Continuous** Recurrence: $\mathbb{E}[C_n] \approx \mathbb{E}[T_n] + \int_0^1 w(\alpha) \mathbb{E}[C_{\alpha n}] \, d\alpha$

Ansatz: $\mathbb{E}[C_n] = \frac{\gamma}{H} n \ln n$

\sim fulfills recurrence for $H = \sum_{l=1}^3 \frac{t_l + 1}{k + 1} (H_{k+1} - H_{t_l+1})$

$\Rightarrow \mathbb{E}[C_n] \sim \frac{\gamma}{H} n \ln n$

Next: What is γ?
Solution of Recurrence

Recurrence: \(\mathbb{E}[C_n] = \mathbb{E}[T_n] + \sum_{j=0}^{n-2} w_{n,j} \mathbb{E}[C_j] \) with \(\mathbb{E}[T_n] \sim \gamma n \)

Apply *Continuous Master Theorem* [Roura 2001]

Idea: Approximate sum by integral over relative subproblem size \(\alpha = j/n \)

\[
\sum_{j=0}^{n-2} w_{n,j} \mathbb{E}[C_j] \approx \int_0^n w_{n,j} \mathbb{E}[C_j] \, dj \approx \int_0^1 n \cdot w_{n,\alpha n} \mathbb{E}[C_{\alpha n}] \, d\alpha \to w(\alpha)
\]

\(\sim \) Continuous Recurrence: \(\mathbb{E}[C_n] \approx \mathbb{E}[T_n] + \int_0^1 w(\alpha) \mathbb{E}[C_{\alpha n}] \, d\alpha \)

Ansatz: \(\mathbb{E}[C_n] = \frac{\gamma}{H} n \ln n \)

\(\sim \) fulfills recurrence for \(H = \sum_{l=1}^3 \frac{t_l + 1}{k + 1} (\mathcal{H}_{k+1} - \mathcal{H}_{t_l+1}) \)

\(\sim \) \(\mathbb{E}[C_n] \sim \frac{\gamma}{H} n \ln n \)

Next: What is \(\gamma \)?
Solution of Recurrence

Recurrence: \(\mathbb{E}[C_n] = \mathbb{E}[T_n] + \sum_{j=0}^{n-2} w_{n,j} \mathbb{E}[C_j] \) with \(\mathbb{E}[T_n] \sim \gamma n \)

Apply \textit{Continuous Master Theorem} [Roura 2001]

Idea: Approximate sum by \textbf{integral} over \textbf{relative} subproblem size \(\alpha = j/n \)

\[
\sum_{j=0}^{n-2} w_{n,j} \mathbb{E}[C_j] \approx \int_0^n w_{n,j} \mathbb{E}[C_j] \, dj \approx \int_0^1 \underbrace{n \cdot w_{n,\alpha n}} \mathbb{E}[C_{\alpha n}] \, d\alpha \rightarrow w(\alpha)
\]

\(\xrightarrow{\sim} \) \textbf{Continuous} Recurrence: \(\mathbb{E}[C_n] \approx \mathbb{E}[T_n] + \int_0^1 w(\alpha) \mathbb{E}[C_{\alpha n}] \, d\alpha \)

Ansatz: \(\mathbb{E}[C_n] = \frac{\gamma}{H} n \ln n \)

\(\xrightarrow{\sim} \) fulfills recurrence for \(H = \sum_{l=1}^{3} \frac{t_l + 1}{k + 1} (\mathcal{H}_{k+1} - \mathcal{H}_{t_l+1}) \)

\(\xrightarrow{\sim} \) \(\mathbb{E}[C_n] \sim \frac{\gamma}{H} n \ln n \)

Next: What is \(\gamma \)?
Solution of Recurrence

Recurrence: \(\mathbb{E}[C_n] = \mathbb{E}[T_n] + \sum_{j=0}^{n-2} w_{n,j} \mathbb{E}[C_j] \) with \(\mathbb{E}[T_n] \sim \gamma n \)

Apply **Continuous Master Theorem** [Roura 2001]

Idea: Approximate sum by integral over relative subproblem size \(\alpha = j/n \)

\[
\sum_{j=0}^{n-2} w_{n,j} \mathbb{E}[C_j] \approx \int_0^n w_{n,j} \mathbb{E}[C_j] \, dj \approx \int_0^1 n \cdot w_{n,\alpha n} \mathbb{E}[C_{\alpha n}] \, d\alpha
\]

\(\rightarrow w(\alpha) \)

\(\sim \) **Continuous** Recurrence: \(\mathbb{E}[C_n] \approx \mathbb{E}[T_n] + \int_0^1 w(\alpha) \mathbb{E}[C_{\alpha n}] \, d\alpha \)

Ansatz: \(\mathbb{E}[C_n] = \frac{\gamma}{H} n \ln n \)

\(\sim \) fulfills recurrence for \(H = \sum_{l=1}^{3} \frac{t_l + 1}{k + 1} (\mathcal{H}_{k+1} - \mathcal{H}_{t_l+1}) \)

\(\rightarrow \mathbb{E}[C_n] \sim \frac{\gamma}{H} n \ln n \)

Next: What is \(\gamma \)?
Solution of Recurrence

Recurrence: \(\mathbb{E}[C_n] = \mathbb{E}[T_n] + \sum_{j=0}^{n-2} w_{n,j} \mathbb{E}[C_j] \) with \(\mathbb{E}[T_n] \sim \gamma n \)

Apply **Continuous Master Theorem** [Roura 2001]

Idea: Approximate sum by integral over relative subproblem size \(\alpha = j/n \)

\[
\sum_{j=0}^{n-2} w_{n,j} \mathbb{E}[C_j] \approx \int_0^n w_{n,j} \mathbb{E}[C_j] \, dj \approx \int_0^1 n \cdot w_{n,\alpha n} \mathbb{E}[C_{\alpha n}] \, d\alpha \\
\rightarrow w(\alpha)
\]

\(\sim \) **Continuous** Recurrence: \(\mathbb{E}[C_n] \approx \mathbb{E}[T_n] + \int_0^1 w(\alpha) \mathbb{E}[C_{\alpha n}] \, d\alpha \)

Ansatz: \(\mathbb{E}[C_n] = \frac{\gamma}{H} n \ln n \)

\(\sim \) fulfills recurrence for \(H = \sum_{l=1}^{3} \frac{t_l + 1}{k + 1} (\mathcal{H}_{k+1} - \mathcal{H}_{t_l+1}) \)

\(\sim \) \(\mathbb{E}[C_n] \sim \frac{\gamma}{H} n \ln n \)

Next: What is \(\gamma \)?
How many comparisons for one element? It depends! Either 2 or 1.

~ T_n \sim 2n \text{ – “cheap elements”:
- } s @ K: \text{ small in } k’s \text{ range}
- } l @ G: \text{ large in } g’s \text{ range}

~ need ranges K and G!

Recall Invariant:

|K| \sim I_1 + I_2
|G| \sim I_3

with I = (I_1, I_2, I_3) sizes of partitions
How many comparisons for one element? It depends! Either 2 or 1.

Recall Invariant:

\[P \quad < P \quad P \leq o \leq Q \quad \geq Q \quad Q \]

- \(|K| \sim I_1 + I_2\)
- \(|G| \sim I_3\)

\(\Rightarrow\) need ranges \(K\) and \(G\)!

\(\Rightarrow\) sizes of partitions \(I = (I_1, I_2, I_3)\)
How many comparisons for one element? It depends! Either 2 or 1.

龃龃日讯

ساء

Recall Invariant: trans

_sizes of partitions

\begin{align*}
|K| & \sim I_1 + I_2 \\
|G| & \sim I_3
\end{align*}
How many comparisons for one element? It depends! Either 2 or 1.

- $< P \ ?$
 - \checkmark
 - \times
 - swap ℓ
 - skip
 - $< Q \ ?$
 - \checkmark
 - \times
 - swap g

- $> Q \ ?$
 - \times
 - \checkmark
 - skip
 - $< P \ ?$
 - \checkmark
 - \times
 - swap ℓ
 - swap k

$\Rightarrow T_n \sim 2n$ — "cheap elements":
- $s @ K$: small in k's range
- $l @ G$: large in g's range

\Rightarrow need ranges K and G!

Recall Invariant:

\[
\begin{array}{c|c|c|c|c|c}
P & < P & P \leq o \leq Q & \geq Q & Q \\
\end{array}
\]

- $|K| \sim I_1 + I_2$
- $|G| \sim I_3$

with $I = (I_1, I_2, I_3)$ sizes of partitions
#Comparisons per Partitioning

How many comparisons for one element? It depends! Either 2 or 1.

$$\begin{align*}
\text{if } < \ P & \text{ then swap } \ell \\
\text{if } \geq \ Q & \text{ then swap } g
\end{align*}$$

$$\begin{align*}
\text{if } < \ P & \text{ then skip} \\
\text{if } > \ Q & \text{ then swap } k
\end{align*}$$

$$\Rightarrow T_n \sim 2n \ - \ "cheap\ elements":$$

- $s @ K$: small in k’s range
- $l @ G$: large in g’s range

$$\Rightarrow \text{need ranges } K \text{ and } G!$$

Recall Invariant:

$$\begin{align*}
P \ &< \ P \ &P \leq \ o \leq \ Q \ &\geq \ Q \ &Q
\end{align*}$$

- $|K| \sim I_1 + I_2$
- $|G| \sim I_3$

with $I = (I_1, I_2, I_3)$ sizes of partitions
How many comparisons for one element? It depends! Either 2 or 1.

\[\begin{align*}
\text{if } P &< Q, \\
\text{then use } &\text{swap } \ell \\
\quad \text{or } &\text{swap } g
\end{align*} \]

\[\begin{align*}
\text{if } P &> Q, \\
\text{then use } &\text{swap } k
\end{align*} \]

\[\begin{align*}
\text{if } P &< Q, \\
\text{then use } &\text{swap } \ell \\
\quad \text{or } &\text{swap } k
\end{align*} \]

\[\begin{align*}
\text{if } P &> Q, \\
\text{then use } &\text{swap } k
\end{align*} \]

\[T_n \sim 2n \sim \text{“cheap elements”:\n\begin{align*}
\text{if } s &\in \mathcal{K}, \\
\text{then } &\text{small in } k\text{’s range}
\end{align*} \]

\[\begin{align*}
\text{if } l &\in \mathcal{G}, \\
\text{then } &\text{large in } g\text{’s range}
\end{align*} \]

\[\sim \text{need ranges } \mathcal{K} \text{ and } \mathcal{G}! \]

Recall Invariant:

\[\begin{array}{c}
\begin{array}{c}
\text{P} \\
\text{< P} \\
\text{P \leq \circ \leq Q} \\
\text{\geq Q} \\
\text{Q}
\end{array}
\end{array} \]

\[\begin{align*}
|\mathcal{K}| &\sim I_1 + I_2 \\
|\mathcal{G}| &\sim I_3
\end{align*} \]

with \(I = (I_1, I_2, I_3) \) sizes of partitions
Comparisons per Partitioning

How many comparisons for one element? It depends! Either 2 or 1.

唆 Tₙ ～ 2n — ”cheap elements“:
- s @ K: small in k’s range
- l @ G: large in g’s range

唆 need ranges K and G!

Recall Invariant:

| K | ~ I₁ + I₂
| G | ~ I₃

with I = (I₁, I₂, I₃) sizes of partitions
Distribution of $s@K$ and $l@G$

Consider I fixed.

- $|K| \sim I_1 + I_2$
- $|G| \sim I_3$
- $\#_{small} = I_1$
- $\#_{large} = I_3$

Draw positions of small elements:
1. All array indices in urn
2. Draw without replacement
3. Count green balls

$I = (3, 2, 3)$
Distribution of $s@K$ and $l@G$

Consider I fixed.

- $|K| \sim I_1 + I_2$
- $|G| \sim I_3$
- $\text{#small} = I_1$
- $\text{#large} = I_3$

Draw positions of small elements:

1. All array indices in urn
2. Draw without replacement
3. Count green balls

$I = (3, 2, 3)$

$\Rightarrow s@K = 2$
Consider \(I \) fixed.

\[
\begin{align*}
|K| & \sim I_1 + I_2 \\
|G| & \sim I_3
\end{align*}
\]

\(\#\text{small} = I_1 \)

\(\#\text{large} = I_3 \)

Draw \textit{positions} of small elements:
1. All array \textit{indices} in urn
2. Draw without replacement
3. Count green balls

\(I = (3, 2, 3) \)

\(\Rightarrow s @ K = 2 \)
Distribution of $s_{@K}$ and $l_{@G}$

Consider I fixed.

$|K| \sim I_1 + I_2$

$|G| \sim I_3$

$\#small = I_1$

$\#large = I_3$

Draw positions of small elements:

1. All array indices in urn
2. Draw without replacement
3. Count green balls

$I = (3, 2, 3)$

$\Rightarrow s_{@K} = 2$
Distribution of $s_{\mathcal{K}}$ and $l_{\mathcal{G}}$

Consider I fixed.

\[|\mathcal{K}| \sim I_1 + I_2 \quad \text{and} \quad |\mathcal{G}| \sim I_3 \]

\[\#_{\text{small}} = I_1 \quad \text{and} \quad \#_{\text{large}} = I_3 \]

Draw positions of small elements:

1. All array indices in urn
2. Draw without replacement
3. Count green balls

$I = (3, 2, 3)$

\[\sim \to s_{\mathcal{K}} = 2 \]
Distribution of $s@K$ and $l@G$

Consider I fixed.

$$|K| \sim I_1 + I_2$$
$$|G| \sim I_3$$

$$\#\text{small} = I_1$$
$$\#\text{large} = I_3$$

Draw positions of small elements:
1. All array indices in urn
2. Draw without replacement
3. Count green balls

$I = (3, 2, 3)$

$$\Rightarrow s@K = 2$$
Consider I fixed.

\[|K| \sim I_1 + I_2 \quad \text{and} \quad |G| \sim I_3 \]

\[\#\text{small} = I_1 \quad \text{and} \quad \#\text{large} = I_3 \]

Draw **positions** of small elements:
1. All array **indices** in urn
2. Draw without replacement
3. Count green balls

\[I = (3, 2, 3) \]

\[\implies s@K = 2 \]
Distribution of $s@\mathcal{K}$ and $l@\mathcal{G}$

Consider I fixed.

$|\mathcal{K}| \sim I_1 + I_2$

$|\mathcal{G}| \sim I_3$

$\#\text{small} = I_1$

$\#\text{large} = I_3$

Draw positions of small elements:

1. All array indices in urn
2. Draw without replacement
3. Count green balls

$I = (3, 2, 3)$

$\sim \ s@\mathcal{K} = 2$
Distribution of \(s@K \) and \(l@G \)

Consider \(I \) fixed.

\[
\begin{align*}
|K| & \sim I_1 + I_2 \\
|G| & \sim I_3 \\
\text{#small} & = I_1 \\
\text{#large} & = I_3
\end{align*}
\]

\(s@K \overset{D}{=} \text{Hypergeometric}(\text{#small}, |K|, n - k) \)

Draw positions of small elements:
1. All array indices in urn
2. Draw without replacement
3. Count green balls

\(I = (3, 2, 3) \)

\[
\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\end{array}
\]

\(\sim \) \(s@K = 2 \)

Similarly: \(l@G \overset{D}{=} \text{Hypergeometric}(\text{#large}, |G|, n - k) \)
Consider I fixed.

\[|K| \sim I_1 + I_2 \quad \#\text{small} = I_1 \]
\[|G| \sim I_3 \quad \#\text{large} = I_3 \]

\[s@K \overset{D}{=} \text{Hypergeometric}(\#\text{small}, |K|, n - k) \]

Draw positions of small elements:
1. All array indices in urn
2. Draw without replacement
3. Count green balls

\[I = (3, 2, 3) \]

Similarly:
\[l@G \overset{D}{=} \text{Hypergeometric}(\#\text{large}, |G|, n - k) \]
Recall: Input n i.i.d. $\text{Uniform}(0, 1)$ variables.

- Assume fixed pivot values P and Q
- Classes of elements are i.i.d. with

\[
\begin{align*}
\Pr[x \text{ small}] &= P \\
\Pr[x \text{ medium}] &= Q - P \\
\Pr[x \text{ large}] &= 1 - Q
\end{align*}
\]

- Nicer: In terms of Spacings $D = (D_1, D_2, D_3)$

Partition sizes I = cumulative result of independent repetitions

\[
I \sim \text{Multinomial}(n-1, D)
\]
Recall: Input n i.i.d. Uniform(0,1) variables.

- Assume fixed pivot values P and Q
- Classes of elements are i.i.d. with

\[\Pr[x \text{ small}] = P =: D_1 \]
\[\Pr[x \text{ medium}] = Q - P =: D_2 \]
\[\Pr[x \text{ large}] = 1 - Q =: D_3 \]

Nicer: In terms of Spacings \(D = (D_1, D_2, D_3) \)

\[\Rightarrow \] Partition sizes \(I = \) cumulative result of independent repetitions

\[I = \text{Multinomial}(n; D_1, D_2, D_3) \]
Recall: Input \(n \) \emph{i.i.d.} \(\text{Uniform}(0, 1) \) variables.

- Assume \textbf{fixed pivot values} \(P \) and \(Q \)
- \textbf{Classes} of elements are \emph{i.i.d.} with
 \[
 \Pr[x \text{ small}] = P =: D_1, \quad \Pr[x \text{ medium}] = Q - P =: D_2, \quad \Pr[x \text{ large}] = 1 - Q =: D_3
 \]

\textbf{Nicer:} In terms of \textbf{Spacings} \(D = (D_1, D_2, D_3) \)

\(\sim \) Partition sizes \(I = \) cumulative result of independent repetitions

\[
I \overset{D}{=} \text{Multinomial}(n - k, D)
\]
Distribution of Partition Sizes I

Recall: Input \(n \) i.i.d. Uniform(0, 1) variables.

- Assume **fixed pivot values** \(P \) and \(Q \)
- **Classes** of elements are i.i.d. with

 \[
 \begin{align*}
 \Pr[x \text{ small}] &= P \quad \equiv \quad D_1 \\
 \Pr[x \text{ medium}] &= Q - P \quad \equiv \quad D_2 \\
 \Pr[x \text{ large}] &= 1 - Q \quad \equiv \quad D_3
 \end{align*}
 \]

- **Nicer:** In terms of **Spacings** \(D = (D_1, D_2, D_3) \)

 \[
 0 \quad \overset{D_1}{\longrightarrow} \quad P \quad \overset{D_2}{\longrightarrow} \quad Q \quad \overset{D_3}{\longrightarrow} \quad 1
 \]

- Partition sizes \(I = \) cumulative result of independent repetitions

\[
I \overset{D}{=} \text{Multinomial}(n - k, D)
\]
Recall: Input \(n \) i.i.d. Uniform(0, 1) variables.

- Assume fixed pivot values \(P \) and \(Q \)

\(\Rightarrow \) Classes of elements are i.i.d. with

\[
\begin{align*}
\Pr[x & \text{ small}] = P =: D_1 \\
\Pr[x & \text{ medium}] = Q - P =: D_2 \\
\Pr[x & \text{ large}] = 1 - Q =: D_3
\end{align*}
\]

\(\Rightarrow \) Nicer: In terms of Spacings \(D = (D_1, D_2, D_3) \)

\(\Rightarrow \) Partition sizes \(I = \) cumulative result of independent repetitions

\[
I \overset{D}{=} \text{Multinomial}(n - k, D)
\]
Distribution of Partition Sizes I

Recall: Input \(n \ i. i. d. \ Uniform(0, 1) \) variables.

- Assume **fixed pivot values** \(P \) and \(Q \)
- **Classes** of elements are \(i. i. d. \) with

 \[
 \begin{align*}
 \Pr[x \text{ small}] &= P =: D_1 \\
 \Pr[x \text{ medium}] &= Q - P =: D_2 \\
 \Pr[x \text{ large}] &= 1 - Q =: D_3
 \end{align*}
 \]

- **Nicer:** In terms of **Spacings** \(\mathbf{D} = (D_1, D_2, D_3) \)

 0 \(\overset{I_1}{\bullet} \) \(P \overset{I_2}{\bullet} \) \(Q \overset{I_3}{\bullet} \) 1

 \[\begin{array}{c}
 D_1 \\
 \hline
 D_2 \\
 \hline
 D_3
 \end{array}\]

- **Partition sizes** \(\mathbf{I} = \) cumulative result of independent repetitions

 \[
 \mathbf{I} \overset{D}{=} \text{Multinomial}(n - k, \mathbf{D})
 \]
Distribution of Partition Sizes I

Recall: Input \(n \) i.i.d. Uniform(0, 1) variables.

- Assume **fixed pivot values** \(P \) and \(Q \)

\[\sim \text{Classes of elements are i.i.d. with} \]

\[
\begin{align*}
\Pr[x \text{ small}] &= P =: D_1 \\
\Pr[x \text{ medium}] &= Q - P =: D_2 \\
\Pr[x \text{ large}] &= 1 - Q =: D_3
\end{align*}
\]

- **Nicer:** In terms of **Spacings** \(D = (D_1, D_2, D_3) \)

\[
D_1 D_2 D_3
\]

\[\sim \text{Partition sizes } I = \text{cumulative result of independent repetitions} \]

\[I \overset{D}{=} \text{Multinomial}(n - k, D) \]
Recall: Input \(n \) i.i.d. \(\text{Uniform}(0, 1) \) variables.

- Assume fixed pivot values \(P \) and \(Q \)

\[\rightsquigarrow \text{Classes of elements are i.i.d. with} \]

\[
\begin{align*}
\Pr[x \text{ small}] &= P &=: D_1 \\
\Pr[x \text{ medium}] &= Q - P &=: D_2 \\
\Pr[x \text{ large}] &= 1 - Q &=: D_3
\end{align*}
\]

- Nicer: In terms of Spacings \(D = (D_1, D_2, D_3) \)

\[\rightsquigarrow \text{Partition sizes } I = \text{cumulative result of independent repetitions} \]

\[I \overset{D}{=} \text{Multinomial}(n - k, D) \]
P and Q are **order statistics** of \(k \) i.i.d. \(\text{Uniform}(0, 1) \) variables.

\[
\begin{array}{c}
0 \\
\hline \\
1 \\
\end{array}
\]

\(t = (1, 2, 3) \)

\[
\leadsto \text{Density for spacings: } f_D(d_1, d_2, d_3) \propto d_1^{t_1} \cdot d_2^{t_2} \cdot d_3^{t_3}
\]

\[\leadsto D \overset{D}{\sim} \text{Dirichlet}(t + 1) = \text{Dirichlet}(t_1 + 1, t_2 + 1, t_3 + 1)\]
P and Q are order statistics of k i.i.d. Uniform(0, 1) variables

\[0 \quad u_i \quad 1 \]

\[t = (1, 2, 3) \]

\[\sim \text{Density for spacings: } f_D(d_1, d_2, d_3) \propto d_1^{t_1} \cdot d_2^{t_2} \cdot d_3^{t_3} \]

\[\sim D \overset{D}{=} \text{Dirichlet}(t + 1) = \text{Dirichlet}(t_1 + 1, t_2 + 1, t_3 + 1) \]
P and Q are order statistics of \(k \) i. i. d. Uniform(0, 1) variables.

\[t = (1, 2, 3) \]

Density for spacings: \(f_D(d_1, d_2, d_3) \propto d_1^{t_1} \cdot d_2^{t_2} \cdot d_3^{t_3} \)

\[\sim D \xrightarrow{D} \text{Dirichlet}(t + 1) = \text{Dirichlet}(t_1 + 1, t_2 + 1, t_3 + 1) \]
P and Q are order statistics of k i.i.d. Uniform(0, 1) variables

\[U_1, U_2, U_3 \]

\[t = (1, 2, 3) \]

\[f_D(d_1, d_2, d_3) \propto d_1^{t_1} \cdot d_2^{t_2} \cdot d_3^{t_3} \]

\[D \sim \text{Dirichlet}(t + 1) = \text{Dirichlet}(t_1 + 1, t_2 + 1, t_3 + 1) \]
P and Q are order statistics of \(k \) i.i.d. \(\text{Uniform}(0, 1) \) variables.

Density for spacings:
\[
f_D(d_1, d_2, d_3) \propto d_1^{t_1} \cdot d_2^{t_2} \cdot d_3^{t_3}
\]

\(D \sim \text{Dirichlet}(t + 1) = \text{Dirichlet}(t_1 + 1, t_2 + 1, t_3 + 1) \)
P and Q are order statistics of k i.i.d. Uniform(0, 1) variables

\[t = (1, 2, 3) \]

\[\sim \] Density for spacings:
\[f_D(d_1, d_2, d_3) \propto d_1^{t_1} \cdot d_2^{t_2} \cdot d_3^{t_3} \]

\[\sim \] \(D \overset{D}{\sim} \text{Dirichlet}(t + 1) = \text{Dirichlet}(t_1 + 1, t_2 + 1, t_3 + 1) \]
P and Q are \textit{order statistics} of \(k\) \textit{i.i.d. Uniform}(0, 1) variables

\[t = (1, 2, 3)\]

\(\Rightarrow\) Density for spacings:
\[f_D(d_1, d_2, d_3) \propto d_1^{t_1} \cdot d_2^{t_2} \cdot d_3^{t_3}\]

\(\Rightarrow D \overset{D}{=} \text{Dirichlet}(t + 1) = \text{Dirichlet}(t_1 + 1, t_2 + 1, t_3 + 1)\)
P and Q are **order statistics** of k i.i.d. *Uniform*(0, 1) variables

$$t = (1, 2, 3)$$

Density for spacings: $f_D(d_1, d_2, d_3) \propto d_1^{t_1} \cdot d_2^{t_2} \cdot d_3^{t_3}$

$D \overset{D}{=} \text{Dirichlet}(t + 1) = \text{Dirichlet}(t_1 + 1, t_2 + 1, t_3 + 1)$
P and Q are order statistics of \(k \) i.i.d. Uniform\((0, 1)\) variables

\[
\begin{align*}
0 & \quad u_1 \quad u_3 \quad u_5 \quad u_6 \quad u_8 \quad u_2 \quad u_7 \quad u_4 \quad 1 \\
\end{align*}
\]

\(t = (1, 2, 3) \)

\[
\leadsto \text{Density for spacings: } f_D(d_1, d_2, d_3) \propto d_1^{t_1} \cdot d_2^{t_2} \cdot d_3^{t_3}
\]

\[
\leadsto D \overset{D}{=} \text{Dirichlet}(t + 1) = \text{Dirichlet}(t_1 + 1, t_2 + 1, t_3 + 1)
\]
P and Q are order statistics of k i.i.d. Uniform(0, 1) variables

\[
t = (1, 2, 3)
\]

Density for spacings:

\[
f_D(d_1, d_2, d_3) \propto d_1^{t_1} \cdot d_2^{t_2} \cdot d_3^{t_3}
\]

\[
D \overset{D}{\sim} Dirichlet(t + 1) = Dirichlet(t_1 + 1, t_2 + 1, t_3 + 1)
\]
P and Q are order statistics of \(k \) i.i.d. Uniform\((0, 1)\) variables

\[
\begin{align*}
\text{Density for spacings: } f_D(d_1, d_2, d_3) & \propto d_{t_1}^{t_1} \cdot d_{t_2}^{t_2} \cdot d_{t_3}^{t_3} \\
\text{D ~ Dirichlet}(t+1) & = \text{Dirichlet}(t_1 + 1, t_2 + 1, t_3 + 1)
\end{align*}
\]
P and Q are order statistics of \(k \) i.i.d. Uniform(0, 1) variables.

\[t = (1, 2, 3) \]

Density for spacings: \(f_D(d_1, d_2, d_3) \propto d_1^{t_1} \cdot d_2^{t_2} \cdot d_3^{t_3} \)

\[D \overset{D}{\sim} Dirichlet(t + 1) = Dirichlet(t_1 + 1, t_2 + 1, t_3 + 1) \]
P and Q are order statistics of \(k \) i.i.d. Uniform(0, 1) variables.

\[
\begin{align*}
D_1 & \quad D_2 \quad D_3 \\
\mathbf{t} & = (1, 2, 3)
\end{align*}
\]

\[\leadsto \text{Density for spacings: } f_D(d_1, d_2, d_3) \propto d_1^{t_1} \cdot d_2^{t_2} \cdot d_3^{t_3}\]

\[\leadsto \mathbf{D} \overset{\mathcal{D}}{=} \text{Dirichlet}(\mathbf{t} + 1) = \text{Dirichlet}(t_1 + 1, t_2 + 1, t_3 + 1)\]
Expected #Comparisons per Partitioning

Summary of distributional analysis

- $s \vDash K \equiv \text{HypG}(I_1, I_1 + I_2, n) + O(1)$
- $I \equiv \text{Mult}(n, D) + O(1)$
- $D \equiv \text{Dir}(t + 1)$

\leadsto expected value by successive unconditioning:
Summary of distributional analysis

- \(s \oplus K \overset{D}{=} \text{HypG}(I_1, I_1 + I_2, n) + O(1) \)
- \(I \overset{D}{=} \text{Mult}(n, D) + O(1) \)
- \(D \overset{D}{=} \text{Dir}(t + 1) \)

\(~\rightarrow\) expected value by *successive unconditioning*:

\[E[s \oplus K] \]
Summary of distributional analysis

- $s \circledast K \overset{D}{=} \text{HypG}(I_1, I_1 + I_2, n) + O(1)$
- $I \overset{D}{=} \text{Mult}(n, D) + O(1)$
- $D \overset{D}{=} \text{Dir}(t + 1)$

\sim expected value by \textit{successive unconditioning}:

$$\mathbb{E}[s \circledast K \mid I]$$
Expected #Comparisons per Partitioning

Summary of distributional analysis

\(s \, @ \, K \overset{D}{=} HypG(I_1, I_1 + I_2, n) + O(1) \)

\(I \overset{D}{=} Mult(n, D) + O(1) \)

\(D \overset{D}{=} Dir(t + 1) \)

\(\leadsto \) expected value by **successive unconditioning:**

\[\mathbb{E}_I [\mathbb{E}_I [s \, @ \, K \mid I] \mid D] \]
Expected #Comparisons per Partitioning

Summary of distributional analysis

- $s \circ \mathcal{K} \overset{d}{=} \text{HypG}(I_1, I_1 + I_2, n) + O(1)$
- $I \overset{d}{=} \text{Mult}(n, D) + O(1)$
- $D \overset{d}{=} \text{Dir}(t + 1)$

\(\sim \) expected value by successive unconditioning:

$$\mathbb{E}_D \left[\mathbb{E}_I \left[\mathbb{E}[s \circ \mathcal{K} \mid I] \mid D \right] \right]$$
Summary of distributional analysis

- $s \oplus_K \overset{D}{=} HypG(I_1, I_1 + I_2, n) + O(1)$
- $I \overset{D}{=} Mult(n, D) + O(1)$
- $D \overset{D}{=} Dir(t + 1)$

Expected value by successive unconditioning:

$$E_D \left[E_I \left[E[s @ K | I] | D \right] \right] = \frac{(t_1 + 1)(t_1 + t_2 + 3)}{(k + 2)(k + 1)} \cdot n + O(1)$$
Expected #Comparisons per Partitioning

Summary of distributional analysis

- \(s @ K \overset{\mathcal{D}}{=} HypG(I_1, I_1 + I_2, n) + O(1) \)
- \(I \overset{\mathcal{D}}{=} Mult(n, D) + O(1) \)
- \(D \overset{\mathcal{D}}{=} Dir(t + 1) \)

\(\rightsquigarrow \) expected value by **successive unconditioning**:

\[
\mathbb{E}_D \left[\mathbb{E}_I \left[\mathbb{E} [s @ K | I] | D \right] \right] = \frac{(t_1 + 1)(t_1 + t_2 + 3)}{(k + 2)(k + 1)} \cdot n + O(1)
\]

\[
\mathbb{E}_D \left[\mathbb{E}_I \left[\mathbb{E} [l @ G | I] | D \right] \right] = \frac{(t_3 + 2)(t_3 + 1)}{(k + 2)(k + 1)} \cdot n + O(1)
\]
Expected #Comparisons

Final Result:

$$\mathbb{E}[C_n] \sim \frac{\gamma}{H} \cdot n \ln n$$
Final Result:

\[\mathbb{E}[C_n] \sim \frac{\gamma}{\sum_{l=1}^{3} \frac{t_l + 1}{k + 1} (H_{k+1} - H_{t_l+1})} \cdot n \ln n \]
Expected #Comparisons

Final Result:

\[\mathbb{E}[C_n] \sim 2 - \frac{s@K}{n} - \frac{l@G}{n} \cdot n \ln n \]

\[\sum_{l=1}^{3} \frac{t_l + 1}{k + 1} (H_{k+1} - H_{t_l+1}) \]
Expected #Comparisons

Final Result: \[E[C_n] \sim 2 - \frac{(t_1 + 1)(t_1 + t_2 + 3)}{(k + 2)(k + 1)} - \frac{(t_3 + 2)(t_3 + 1)}{(k + 2)(k + 1)} \cdot \sum_{l=1}^{3} \frac{t_l + 1}{k + 1} (H_{k+1} - H_{t_l+1}) \cdot n \ln n \]
Expected #Comparisons

Final Result:

\[
\mathbb{E}[C_n] \sim 2 - \frac{(t_1 + 1)(t_1 + t_2 + 3)}{(k + 2)(k + 1)} - \frac{(t_3 + 2)(t_3 + 1)}{(k + 2)(k + 1)} \cdot n \ln n
\]

\[
\sum_{l=1}^{3} \frac{t_l + 1}{k + 1} (\mathcal{H}_{k+1} - \mathcal{H}_{t_l+1})
\]

... a little hard to interpret.

Let’s have some pictures.
Expected #Comparisons

Final Result:

\[
\mathbb{E}[C_n] \sim 2 - \frac{(t_1 + 1)(t_1 + t_2 + 3)}{(k + 2)(k + 1)} - \frac{(t_3 + 2)(t_3 + 1)}{(k + 2)(k + 1)} \cdot n \ln n \\
\sum_{l=1}^{3} \frac{t_l + 1}{k + 1} (\mathcal{H}_{k+1} - \mathcal{H}_{t_l+1})
\]
Expected #Comparisons

Final Result:

$$\mathbb{E}[C_n] \sim 2 - \frac{(t_1 + 1)(t_1 + t_2 + 3)}{(k + 2)(k + 1)} - \frac{(t_3 + 2)(t_3 + 1)}{(k + 2)(k + 1)} \sum_{l=1}^{3} \frac{t_1 + 1}{k + 1} (H_{k+1} - H_{t_1+1}) \cdot n \ln n$$
Expected #Comparisons

Final Result:

\[
E[C_n] \sim 2 - \frac{(t_1 + 1)(t_1 + t_2 + 3)}{(k + 2)(k + 1)} - \frac{(t_3 + 2)(t_3 + 1)}{(k + 2)(k + 1)} \\
\sum_{l=1}^{3} \frac{t_l + 1}{k + 1} (\mathcal{H}_{k+1} - \mathcal{H}_{t_l+1}) \cdot n \ln n
\]
Expected #Comparisons

Final Result:

\[
\mathbb{E}[C_n] \sim \frac{2 - \frac{(t_1 + 1)(t_1 + t_2 + 3)}{(k + 2)(k + 1)} - \frac{(t_3 + 2)(t_3 + 1)}{(k + 2)(k + 1)}}{\sum_{l=1}^{3} \frac{t_l + 1}{k + 1}(H_{k+1} - H_{t_l+1})} \cdot n \ln n
\]
Expected #Comparisons

Final Result:

\[\mathbb{E}[C_n] \sim 2 - \frac{(t_1 + 1)(t_1 + t_2 + 3)}{(k + 2)(k + 1)} - \frac{(t_3 + 2)(t_3 + 1)}{(k + 2)(k + 1)} \sum_{l=1}^{3} \frac{t_l + 1}{k + 1} (H_{k+1} - H_{t_l+1}) \cdot n \ln n \]
Final Result:
\[
E[C_n] \sim 2 - \frac{(t_1 + 1)(t_1 + t_2 + 3)}{(k + 2)(k + 1)} - \frac{(t_3 + 2)(t_3 + 1)}{(k + 2)(k + 1)} \sum_{l=1}^{3} \frac{t_l + 1}{k + 1}(H_{k+1} - H_{t_l+1}) \cdot n \ln n
\]
Similarly: full (basic block) frequency analysis

⇝ #Bytecode instructions, MMIX costs etc.

Recall: Optimum for comparisons

\[\tau^* \approx (0.4288, 0.2688, 0.3024) \]

⇝ Contrary skew of pivots needed!

⇝ Optimal skew of pivots heavily depends on cost measure!
Similarly: full (basic block) frequency analysis

⇝ #Bytecode instructions, MMIX costs etc.

Optimum for Bytecodes
\[\tau^*_{BC} \approx (0.2068, 0.3485, 0.4447) \]

Recall:
Optimum for comparisons
\[\tau^* \approx (0.4288, 0.2688, 0.3024) \]

⇝ Contrary skew of pivots needed!

⇝ Optimal skew of pivots heavily depends on cost measure!
Similarly: full (basic block) frequency analysis

\[\Rightarrow \text{#Bytecode instructions, MMIX costs etc.} \]

Optimum for Bytecodes

\[\tau^*_\text{BC} \approx (0.2068, 0.3485, 0.4447) \]

Recall:

Optimum for comparisons

\[\tau^* \approx (0.4288, 0.2688, 0.3024) \]

\[\Rightarrow \text{Contrary skew of pivots needed!} \]

\[\Rightarrow \text{Optimal skew of pivots heavily depends on cost measure!} \]
Beyond Comparisons

Similarly: full *(basic block) frequency analysis

\[\cdots \rightarrow \text{#Bytecode instructions, MMIX costs etc.} \]

![#Bytecodes graph](image)

- Optimum for *Bytecodes*
 \[\tau_{BC}^* \approx (0.2068, 0.3485, 0.4447) \]

- Recall:
 Optimum for comparisons
 \[\tau^* \approx (0.4288, 0.2688, 0.3024) \]

\[\cdots \rightarrow \text{Contrary skew of pivots needed!} \]

\[\cdots \rightarrow \text{Optimal skew of pivots heavily depends on cost measure!} \]
Similarly: full (basic block) frequency analysis

\[\text{#Bytecode instructions, MMIX costs etc.} \]

- Optimum for **Bytecodes**
 \[\tau^*_BC \approx (0.2068, 0.3485, 0.4447) \]

- Recall:
 Optimum for **comparisons**
 \[\tau^* \approx (0.4288, 0.2688, 0.3024) \]

\[\text{Contrary skew of pivots needed!} \]

\[\text{Optimal skew of pivots heavily depends on cost measure!} \]
Similarly: full (basic block) frequency analysis

⇝ #Bytecode instructions, MMIX costs etc.

Optimum for Bytecodes
\[\tau_{BC}^* \approx (0.2068, 0.3485, 0.4447) \]

Recall:
Optimum for comparisons
\[\tau^* \approx (0.4288, 0.2688, 0.3024) \]

⇝ Contrary skew of pivots needed!

⇝ Optimal skew of pivots heavily depends on cost measure!
Similarly: full (basic block) frequency analysis

\[\Rightarrow \] #Bytecode instructions, MMIX costs etc.

- **Optimum for Bytecodes**
 \[\tau_{BC}^* \approx (0.2068, 0.3485, 0.4447) \]

- **Recall:**
 Optimum for comparisons
 \[\tau^* \approx (0.4288, 0.2688, 0.3024) \]

\[\Rightarrow \text{Contrary skew of pivots needed!} \]

\[\Rightarrow \text{Optimal skew of pivots heavily depends on cost measure!} \]
Similarly: full (basic block) frequency analysis

⇝ #Bytecode instructions, MMIX costs etc.

- Optimum for Bytecodes
 \(\tau^*_BC \approx (0.2068, 0.3485, 0.4447) \)

- Recall:
 Optimum for comparisons
 \(\tau^* \approx (0.4288, 0.2688, 0.3024) \)

⇝ Contrary skew of pivots needed!

⇝ Optimal skew of pivots heavily depends on cost measure!
Similarly: full (basic block) frequency analysis

\[\Rightarrow \] #Bytecode instructions, MMIX costs etc.

- Optimum for **Bytecodes**
 \[\tau^*_B \approx (0.2068, 0.3485, 0.4447) \]

- Recall:
 Optimum for **comparisons**
 \[\tau^* \approx (0.4288, 0.2688, 0.3024) \]

\[\Rightarrow \] Contrary skew of pivots needed!

\[\Rightarrow \] Optimal skew of pivots heavily depends on **cost measure**!
We’ve seen:

- **Asymmetric** partitioning calls for **skewed** pivots
- **Optimal** skew **sensitive** to employed cost measure

→ Realistic cost measure and detailed analysis needed!

Open Questions:

- What exactly makes Yaroslavskiy’s algorithm fast in **practice**?
 - Memory Hierarchy Effects?
- Is Yaroslavskiy’s algorithm **special**?
 - Are there even faster methods?
- Will they be asymmetric?
We’ve seen:

- **Asymmetric** partitioning calls for **skewed** pivots
- **Optimal** skew **sensitive** to employed cost measure

⇒ Realistic cost measure and detailed analysis needed!

Open Questions:

- What **exactly** makes Yaroslavskiy’s algorithm fast in **practice**?
 - Memory Hierarchy Effects?
- Is Yaroslavskiy’s algorithm **special**?
 - Are there even faster methods?
- Will they be asymmetric?